Hydrodynamic calculation of spray wire packing

2019 ◽  
Author(s):  
A. V. Tsygankov ◽  
Y. L. Kuznetsov ◽  
O. V. Dolgovskaia ◽  
A. Hildayati ◽  
A. S. Shilin
Author(s):  
Н.И. Музаев ◽  
К.С. Харебов ◽  
И.Д. Музаев

Разработан гидродинамический метод расчета селективного водозаборного процесса в водоеме с непрерывной по всей глубине плотностной стратификацией. В качестве математической модели водозаборного процесса использована краевая задача линейной теории поверхностных гравитационных волн малой амплитуды в идеальной несжимаемой и неоднородной жидкости. Получена совокупность расчетных формул, которая позволяет решить задачу водоснабжения промышленных предприятий, в том числе тепловых и атомных электростанций, из водоемов с непрерывной плотностной стратификацией. Предлагаемый метод расчета позволяет определить скорость водозабора через окно и высоту водозаборного окна, которые обеспечивают надлежащее положение поверхности раздела, соответствующее заданной плотности (температуры) забираемой воды. The purpose of this work is to develop the hydrodynamic calculation method for selective water-intake process applied to the problem of water supply to industrial enterprises, including thermal and atomic power stations using the reservoirs with the continuous density stratification. In the method of solving the problem, the variation of density along the depth is approximated by an exponential function. The water is taken through a window arranged on the side of the water body. The boundary value problem for the linear theory of surface gravity waves of small amplitude in an ideal incompressible and inhomogeneous fluid is used as a mathematical model of the water intake process. As a result, a set of calculation formulas has been obtained that allows solving the problem of water supply to industrial enterprises, including thermal and nuclear power stations, from water bodies with a continuous density stratification along the depth. Computational experiments have been performed, the results of which are given in the form of graphs of the dependence of the thickness of the bottom layer of water sucking the window on the density Froude number and on the height of the water intake window. The following conclusions are made on the basis of the comparison of the developed hydrodynamic calculation method compared with the existing hydraulic method: 1. In the existing hydraulic method of calculation, only the law of the dependence of the thickness of the suction ground layer of water on the density Froude number is described, however the nature of its dependence on the height of the water intake window is not established. 2. In the hydrodynamic calculation method of selective water-intake process developed in the article, the law of the dependence of the sucking through the window water ground layer thickness both on the density Froude number and on the height of waterintake window is established. 3. In connection with the aforementioned deficiency of the hydraulic calculation method, in reservoirs characterized by a continuous density stratification in depth, calculations and design of selective water intake devices should be carried out according to the hydrodynamic method developed in the article.


2019 ◽  
Vol 134 (4) ◽  
pp. 90-98
Author(s):  
Veniamin A. Khyamyalyaynen ◽  
◽  
Mikhail A. Baev ◽  

1991 ◽  
Vol 143 ◽  
pp. 549-549
Author(s):  
M. Kiriakidis ◽  
N. Langer ◽  
K.J. Fricke

A selfconsistent hydrodynamic calculation of a very massive star (MZAMS = 2OOM⊙) including turbulent pressure and energy has been performed. In the contraction phase after core hydrogen exhaustion, the star moves towards cool surface temperatures in the HR diagram (cf. Fig. 1). Consequently, (at Teff ⋍ 8000K) an envelope convection zone developes, and its inner boundery moves inwards with time. First, the envelope remains in hydrostatic equilibrium, with radiation pressure correspondingly decreasing as turbulent pressure increases (gas pressure is small). However, due to the fact, that the gradient of the turbulent pressure is directed inwards at the bottom of the convective zone, this part of the star rapidly contracts. Due to the released contraction energy, the luminosity locally exceeds the Eddington-luminosity. It cannot be transported outwards by convection in the upper part of the convection zone, where convective energy transport is inefficient (▽c ⋍ ▽r) . Thus, the local super-Eddington luminosity leads to the ejection of the overlying layers.


1988 ◽  
Vol 330 ◽  
pp. 142 ◽  
Author(s):  
G. E. Eggum ◽  
F. V. Coroniti ◽  
J. I. Katz

1987 ◽  
Vol 323 ◽  
pp. 634 ◽  
Author(s):  
G. E. Eggum ◽  
F. V. Coroniti ◽  
J. I. Katz

2015 ◽  
Vol 39 (2) ◽  
pp. 337-355
Author(s):  
Ki-Deok Ro

In this study, a rotating-type water turbine model applying the principle of the Weis-Fogh mechanism is proposed, and its hydrodynamic characteristics calculated by an advanced vortex method. The unsteady flow and pressure fields around the wing for two revolutions were calculated by changing the uniform flow and maximum opening angle of the wing. The maximum efficiency for one wing of the water turbine was 45.3% at the maximum opening angle of the wing 36° and velocity ratio 2.0. The flow field of the water turbine is very complex because the wing rotates and moves unsteadily in the channel. However, using the advanced vortex method, accurate calculations were possible.


2018 ◽  
Vol 944 ◽  
pp. 012113 ◽  
Author(s):  
O V Soloveva ◽  
S A Solovev ◽  
R R Khusainov ◽  
O S Popkova ◽  
D O Panenko

Sign in / Sign up

Export Citation Format

Share Document