differential mobility
Recently Published Documents


TOTAL DOCUMENTS

694
(FIVE YEARS 105)

H-INDEX

60
(FIVE YEARS 4)

2022 ◽  
Vol 15 (1) ◽  
pp. 11-19
Author(s):  
Dina Alfaouri ◽  
Monica Passananti ◽  
Tommaso Zanca ◽  
Lauri Ahonen ◽  
Juha Kangasluoma ◽  
...  

Abstract. Sulfuric acid and dimethylamine vapours in the atmosphere can form molecular clusters, which participate in new particle formation events. In this work, we have produced, measured, and identified clusters of sulfuric acid and dimethylamine using an electrospray ionizer coupled with a planar-differential mobility analyser, connected to an atmospheric pressure interface time-of-flight mass spectrometer (ESI–DMA–APi-TOF MS). This set-up is suitable for evaluating the extent of fragmentation of the charged clusters inside the instrument. We evaluated the fragmentation of 11 negatively charged clusters both experimentally and using a statistical model based on quantum chemical data. The results allowed us to quantify the fragmentation of the studied clusters and to reconstruct the mass spectrum by removing the artifacts due to the fragmentation.


Author(s):  
C. Prüfert ◽  
J. Villatoro ◽  
M. Zühlke ◽  
T. Beitz ◽  
H.-G. Löhmannsröben

Infrared matrix-assisted desorption and ionization (IR-MALDI) enables the transfer of sub-micron particles (sMP) directly from suspensions into the gas phase and their characterization with differential mobility (DM) analysis.


2021 ◽  
Vol 14 (12) ◽  
pp. 7909-7928
Author(s):  
Markus D. Petters

Abstract. Tikhonov regularization is a tool for reducing noise amplification during data inversion. This work introduces RegularizationTools.jl, a general-purpose software package for applying Tikhonov regularization to data. The package implements well-established numerical algorithms and is suitable for systems of up to ~1000 equations. Included is an abstraction to systematically categorize specific inversion configurations and their associated hyperparameters. A generic interface translates arbitrary linear forward models defined by a computer function into the corresponding design matrix. This obviates the need to explicitly write out and discretize the Fredholm integral equation, thus facilitating fast prototyping of new regularization schemes associated with measurement techniques. Example applications include the inversion involving data from scanning mobility particle sizers (SMPSs) and humidified tandem differential mobility analyzers (HTDMAs). Inversion of SMPS size distributions reported in this work builds upon the freely available software DifferentialMobilityAnalyzers.jl. The speed of inversion is improved by a factor of ~200, now requiring between 2 and 5 ms per SMPS scan when using 120 size bins. Previously reported occasional failure to converge to a valid solution is reduced by switching from the L-curve method to generalized cross-validation as the metric to search for the optimal regularization parameter. Higher-order inversions resulting in smooth, denoised reconstructions of size distributions are now included in DifferentialMobilityAnalyzers.jl. This work also demonstrates that an SMPS-style matrixbased inversion can be applied to find the growth factor frequency distribution from raw HTDMA data while also accounting for multiply charged particles. The outcome of the aerosol-related inversion methods is showcased by inverting multi-week SMPS and HTDMA datasets from ground-based observations, including SMPS data obtained at Bodega Marine Laboratory during the CalWater 2/ACAPEX campaign and co-located SMPS and HTDMA data collected at the US Department of Energy observatory located at the Southern Great Plains site in Oklahoma, USA. Results show that the proposed approaches are suitable for unsupervised, nonparametric inversion of large-scale datasets as well as inversion in real time during data acquisition on low-cost reducedinstruction- set architectures used in single-board computers. The included software implementation of Tikhonov regularization is freely available, general, and domain-independent and thus can be applied to many other inverse problems arising in atmospheric measurement techniques and beyond.


2021 ◽  
Author(s):  
Per Niklas Hedde ◽  
Barbara Barylko ◽  
Derk D. Binns ◽  
David M. Jameson ◽  
Joseph P. Albanesi

ABSTRACTArc, also known as Arg3.1, is an activity-dependent immediate-early gene product that plays essential roles in memory consolidation. A pool of Arc is located in the postsynaptic cytoplasm, where it promotes AMPA receptor endocytosis and cytoskeletal remodeling. However, Arc is also found in the nucleus, a major portion being associated with promyelocytic leukemia nuclear bodies (PML-NBs). Nuclear Arc has been implicated in epigenetic control of gene transcription associated with learning and memory. In this study, we use a battery of fluorescence nanoimaging approaches to characterize the behavior of Arc in living cells. Our results indicate that in the cytoplasm, Arc exists predominantly as monomers and dimers associated with slowly diffusing particles. In contrast, nuclear Arc is almost exclusively monomeric and displays a higher diffusivity than cytoplasmic Arc. We further show that Arc moves freely and rapidly between PML-NBs and the nucleoplasm, and that its movement within PML-NBs is relatively unobstructed.


Author(s):  
Jussi Virtanen ◽  
Anna Anttalainen ◽  
Jaakko Ormiskangas ◽  
Markus Karjalainen ◽  
Anton Kontunen ◽  
...  

Abstract Over the last few decades, breath analysis using electronic nose technology has become a topic of intense research, as it is both non-invasive and painless, and is suitable for point-of-care use. To date, however, only a few studies have examined nasal air. As the air in the oral cavity and the lungs differs from the air in the nasal cavity, it is unknown whether aspirated nasal air could be exploited with electronic nose technology. Compared to traditional electronic noses, differential mobility spectrometry uses an alternating electrical field to discriminate the different molecules of gas mixtures, providing analogous information. This study reports the collection of nasal air by aspiration and the subsequent analysis of the collected air using a differential mobility spectrometer. We collected nasal air from ten volunteers into breath collecting bags and compared them to bags of room air and the air aspirated through the device. Distance and dissimilarity metrics between the sample types were calculated and statistical significance evaluated with Kolmogorov-Smirnov test. After leave-one-day-out cross-validation, a shrinkage linear discriminant classifier was able to correctly classify 100% of the samples. The nasal air differed (p < 0.05) from the other sample types. The results show the feasibility of collecting nasal air by aspiration and subsequent analysis using differential mobility spectrometry, and thus increases the potential of the method to be used in disease detection studies.


Sign in / Sign up

Export Citation Format

Share Document