convective zone
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 43 ◽  
pp. 59-71
Author(s):  
Devendra B. Sadaphale ◽  
S.P. Shekhawat ◽  
Vijay R. Diware

Salt gradient solar ponds are to be designed for thermal efficiency and salinity profile stability. As the salt flux moves upward in the pond, the gradient gets destabilized. This is counteracted by intrusion of salt at different levels as and when required. The density of salt is highest at the bottom and minimum at the top. Hence the destabilization effect is more at top that is at the interface of upper convective zone and non-convective zone (NCZ). In order to keep the interface stable, it is desirable to provide a higher slope of salt gradient near it. However, throughout the non-convective zone, it is not feasible to provide higher slope due to solubility limitations. Hence Husain et al (2012) to divide the NCZ into two parts. The top few centimeters may be given a higher slope and the rest of the zone may be given mild slope as usual. Husain et al (2012) have given analysis for the same and found it to be feasible. However, the experimental feasibility of the same needs to be verified. The present work has done an attempt for the same. In this study, an insulated solar pond with a surface area of 1.40 m2and a depth of 1.14 m is built at the SSBT’s College of Engineering and Technology, Jalgaon in the Maharashtra State (India). The three salty water zones (upper convective, non-convective and heat storage) were formed by filling the pond with salty water of various densities. 6 Thermocouples (type Pt100A) (C+0.2%) were used to measure the temperature profile within the pond. A maximum temperature of 47°C was recorded in the heat storage zone in time span considered for study. The results obtained from experimentation is verified with the concept suggested by Hussain et al (2012) it has been found that they are in a good agreement. The influence of varying the thicknesses of the zones present in a salinity gradient solar pond on the temperatures of the upper convective zone (UCZ) and the lower convective zone (LCZ) is investigated. Also, it is found that by adding the additional non convective zone of 50 mm thickness above the UCZ the heat collection capacity of the LCZ is increased noticeably. The study finds that thickness variation of the zones within the pond is a practical feasibility. The system worked for the entire experimental duration effectively without failure.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012003
Author(s):  
S G Chakrabarty ◽  
U S Wankhede ◽  
R S Shelke

Abstract A solar pond technology employs a layer of salinity gradient to prevent heat loss due to convection from the lower convective zone. Thus, the energy received from solar radiation is stored in a lower convective zone. The thickness of various zones significantly affects the behaviour of solar pond temperature. In this present study, a transient numerical investigation is conducted to evaluate the impact of depths of different zones on the performance characteristics of solar pond. The variation in maximum temperature and maturation period under the influence of non-convective zone and lower convective zone thickness is discussed. The energy obtained from a solar pond significantly depends on various losses associated with the zones. Thus, an assessment of conduction and ground heat loss is presented for the variation in thickness of zones. An attempt is also made to study the effect of thickness of zones on the temperature of the lower convective zone. It is found that the configuration of a smaller thickness of LCZ and a higher thickness of NCZ yields maximum LCZ temperature.


2021 ◽  
Vol 507 (3) ◽  
pp. 3698-3706
Author(s):  
Valentina I Abramenko

ABSTRACT It is a challenging problem to obtain observational evidence of the turbulent component of solar dynamo operating in the convective zone because the dynamo action is hidden below the photosphere. Here we present results of a statistical study of flaring active regions (ARs) that produced strong solar flares of an X-ray class X1.0 and higher during a time period that covered solar cycles 23 and 24. We introduced a magneto-morphological classification of ARs, which allowed us to estimate the possible contribution of the turbulent component of the dynamo into the structure of an AR. We found that in 72 per cent of cases, flaring ARs do not comply with the empirical laws of the global dynamo (frequently they are not bipolar ARs or, if they are, they violate the Hale polarity law, the Joy law, or the leading sunspot prevalence rule). This can be attributed to the influence of the turbulent dynamo action inside the convective zone on spatial scales of typical ARs. Thus, it appears that the flaring is governed by the turbulent component of the solar dynamo. The contribution into the flaring from these AR ‘violators’ (irregular ARs) is enhanced during the second maximum and the descending phase of a solar cycle, when the toroidal field weakens and the influence of the turbulent component becomes more pronounced. These observational findings are in consensus with a concept of the essential role of non-linearities and turbulent intermittence in the magnetic fields generation inside the convective zone, which follows from dynamo simulations.


2021 ◽  
Vol 39 (2) ◽  
pp. 486-492
Author(s):  
Periyasamy Rangaraju ◽  
Santhia Sivakumar

Varying salt density solar pond is a method that is best suited to absorb and store solar energy. This examination includes the test enhancement of the permeable and non-permeable sunlight-based ponds dependent on its exhibition in different conditions. This experiment was done in Salem, Tamil Nadu, India. This particular topographical area has a high level of solar radiation and is a tropical district. Readings for a period of 30 days were taken; the temperature circulation, a measure of heat energy stored and concentration of salt density was assessed. For examination, two comparable solar ponds of volume 0.02 m3 and a height of 0.32 m was built. Black granite pieces, broken glass pieces, and welding spatter were used as a permeable medium in the lower convective zone (LCZ) in one of the two solar ponds. The temperatures of the permeable solar pond and non-permeable solar pond reached the highest values of 42.3℃ and 40.6℃ respectively. The solar pond with a permeable medium demonstrated an increase of 4.18% in temperature. The difference in amounts of stored thermal energy is 4.54 kJ. From the obtained parameters, the optimization is done and the permeable medium solar pond is found to store more amount of heat energy than the non- permeable solar pond. For the optimization of the mixed medium, criterion parameter βelk has been acquired in the solar pond.


Author(s):  
Jean C Costes ◽  
Christopher A Watson ◽  
Ernst de Mooij ◽  
Steven H Saar ◽  
Xavier Dumusque ◽  
...  

Abstract Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log $R^{\prime }_\mathrm{{HK}}$, the cross-correlation function (CCF) bisector span, CCF full-width-at-half-maximum, CCF contrast, and the area of the Gaussian fit to the CCF; and studied their correlation with the RVs. The sign of the correlations appears to vary as a function of stellar spectral type, and the transition in sign signals a noteworthy change in the stellar activity properties where earlier type stars appear more plage dominated. These transitions become more clearly defined when considered as a function of the convective zone depth. Therefore, it is the convective zone depth (which can be altered by stellar metallicity) that appears to be the underlying fundamental parameter driving the observed activity correlations. In addition, for most of the stars, we find that the RVs become increasingly red-shifted as activity levels increase, which can be explained by the increase in the suppression of convective blue-shift. However, we also find a minority of stars where the RVs become increasingly blue-shifted as activity levels increase. Finally, using the correlation found between activity indicators and RVs, we removed RV signals generated by long-term changes in stellar activity. We find that performing simple cleaning of such long-term signals enables improved planet detection at longer orbital periods.


2021 ◽  
Author(s):  
Florian Debras ◽  
Gilles Chabrier

<p>Juno's observations of Jupiter's gravity field have revealed extremely low values for the gravitational moments that are difficult to reconcile with the high abundance of metals observed in the atmosphere by both Galileo and Juno. Recent studies chose to arbitrarily get rid of one of these two constraints in order to build models of Jupiter.</p><p>In this presentation, I will detail our new Jupiter structure models reconciling Juno and Galileo observational constraints. These models confirm the need to separate Jupiter into at least 4 layers: an outer convective shell, a non-convective zone of compositional change, an inner convective shell and a diluted core representing about 60 percent of the planet in radius. Compared to other studies, these models propose a new idea with important consequences: a decrease in the quantity of metals between the outer and inner convective shells. This would imply that the atmospheric composition is not representative of the internal composition of the planet, contrary to what is regularly admitted, and would strongly impact the Jupiter formation scenarios (localization, migration, accretion).</p><p>In particular, the presence of an internal non-convective zone prevents mixing between the two convective envelopes. I will detail the physical processes of this semi-convective zone (layered convection or H-He immiscibility) and explain how they may persist during the evolution of the planet.</p><p>These models also impose a limit mass on the compact core, which cannot be heavier than 5 Earth masses. Such a mass, lower than the runaway gas accretion minimum mass, needs to be explained in the light of our understanding of the formation and evolution of giant planets.</p><p>I will finally detail the application of our work to Saturn, and what we can expect to learn about the interior of the giant planets in the years to come. </p>


2021 ◽  
Vol 118 (4) ◽  
pp. 1185-1195
Author(s):  
Nan Li ◽  
Ruiyang Xu ◽  
Caihong Zhang ◽  
Guoping Wu

Sign in / Sign up

Export Citation Format

Share Document