Spin‐frame independent variables in general relativity

1977 ◽  
Vol 18 (3) ◽  
pp. 441-444 ◽  
Author(s):  
K. Wódkiewicz
Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 173
Author(s):  
Roman Ilin ◽  
Sergey Paston

The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any restrictions on the order of derivatives of the independent variables in it or their transformation laws. As a result of the generalized Noether procedure, we obtain a recurrent chain of the equations, which allows one to express canonical pEMT as a divergence of the superpotential. The explicit expression for this superpotential is also given. We discuss the structure of the obtained expressions and the conditions for the derived pEMT conservation laws to be satisfied independently (fully or partially) by the equations of motion. Deformations of the superpotential form for theories with a change in the independent variables in action are also considered. We apply these results to some interesting particular cases: general relativity and its modifications, particularly mimetic gravity and Regge–Teitelboim embedding gravity.


2022 ◽  
Author(s):  
Arkady Poliakovsky

We investigate Lorentzian structures in the four-dimensionalspace-time, supplemented either by a covector field of thetime-direction or by a scalar field of the global time. Furthermore,we propose a new metrizable model of the gravity. In contrast to theusual Theory of General Relativity where all ten components of thesymmetric pseudo-metrics are independent variables, the presentedhere model of the gravity essentially depend only on singlefour-covector field, restricted to have only three-independentcomponents. However, we prove that the Gravitational field, ruled bythe proposed model and generated by some massive body, resting andspherically symmetric in some coordinate system, is given by apseudo-metrics, which coincides with thewell known Schwarzschild metric from the General Relativity. TheMaxwell equations and Electrodynamics are also investigated in theframes of the proposed model. In particular, we derive the covariantformulation of Electrodynamics of moving dielectrics andpara/diamagnetic mediums.


2011 ◽  
Vol 26 (31) ◽  
pp. 2323-2333
Author(s):  
L. V. LAPERASHVILI

We present a theory of four-dimensional quantum gravity with massive gravitons which may be essentially renormalizable. In Plebanski formulation of general relativity in which the tetrads, the connection and the curvature are all independent variables (and the usual relations among these quantities are valid only on-shell), we consider the nonperturbative theory of gravity with a nonzero background connection. We predict a tiny value of the graviton mass: mg≈1.5×10-42 GeV and extremely small dimensionless coupling constant of the perturbative gravitational interaction: g~10-60. We put forward the idea by Isimori56 on renormalizability of quantum gravity having multi-gravitons with masses m0, m1, …, mN-1.


Author(s):  
M. P. Hobson ◽  
G. P. Efstathiou ◽  
A. N. Lasenby
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document