scholarly journals Gravitational microlensing and dark matter in the galactic halo

1999 ◽  
Author(s):  
Philippe Jetzer
1996 ◽  
Vol 471 (2) ◽  
pp. 774-782 ◽  
Author(s):  
C. Alcock ◽  
R. A. Allsman ◽  
D. Alves ◽  
T. S. Axelrod ◽  
A. C. Becker ◽  
...  

1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


1999 ◽  
Vol 133 ◽  
pp. 211-231
Author(s):  
Ryoichi Nishi ◽  
Kunihito Ioka ◽  
Yukitoshi Kan-ya

2020 ◽  
Vol 496 (1) ◽  
pp. L70-L74
Author(s):  
Henriette Wirth ◽  
Kenji Bekki ◽  
Kohei Hayashi

ABSTRACT Recent observational studies of γ-ray emission from massive globular clusters (GCs) have revealed possible evidence of dark matter (DM) annihilation within GCs. It is, however, still controversial whether the emission comes from DM or from millisecond pulsars. We here present the new results of numerical simulations, which demonstrate that GCs with DM can originate from nucleated dwarfs orbiting the ancient Milky Way. The simulated stripped nuclei (i.e. GCs) have the central DM densities ranging from 0.1 to several M⊙ pc−3, depending on the orbits and the masses of the host dwarf galaxies. However, GCs born outside the central regions of their hosts can have no/little DM after their hosts are destroyed and the GCs become the Galactic halo GCs. These results suggest that only GCs originating from stellar nuclei of dwarfs can possibly have DM. We further calculate the expected γ-ray emission from these simulated GCs and compare them to observations of ω Cen. Given the large range of DM densities in the simulated GCs, we suggest that the recent possible detection of DM annihilation from GCs should be more carefully interpreted.


1998 ◽  
Vol 57 (6) ◽  
pp. 3256-3263 ◽  
Author(s):  
Marc Kamionkowski ◽  
Ali Kinkhabwala

2017 ◽  
Vol 470 (1) ◽  
pp. 522-538 ◽  
Author(s):  
Emily Sandford ◽  
Andreas H. W. Küpper ◽  
Kathryn V. Johnston ◽  
Jürg Diemand

Abstract Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream ‘disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (i) the thinness of the stream on-sky, (ii) the symmetry of the leading and trailing tails and (iii) the deviation of the tails from a low-order polynomial path on-sky (‘path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ∼30–80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.


2011 ◽  
Vol 89 (1) ◽  
pp. 141-152 ◽  
Author(s):  
R. Bernabei ◽  
P. Belli ◽  
F. Montecchia ◽  
F. Nozzoli ◽  
F. Cappella ◽  
...  

The DAMA/LIBRA experiment has a sensitive mass of about 250 kg highly radiopure NaI(Tl). It is running at the Gran Sasso National Laboratory of the INFN in Italy and is mainly devoted to the investigation of dark matter (DM) particles in the galactic halo by exploiting the model-independent DM annual modulation signature. The present DAMA/LIBRA and the former DAMA/NaI experiments (the first generation experiment having an exposed mass of about 100 kg) have thus far cumulatively released the results of data collected over 13 annual cycles (total exposure: 1.17 t year). They give model-independent evidence of the presence of DM particles in the galactic halo on the basis of the investigated DM signature at 8.9 σ C.L. for the cumulative exposure. The main aspects of the obtained results are summarized and some comments are addressed.


Author(s):  
R. BERNABEI ◽  
P. BELLI ◽  
F. MONTECCHIA ◽  
F. NOZZOLI ◽  
F. CAPPELLA ◽  
...  

The DAMA/LIBRA experiment, running at the Gran Sasso National Laboratory of the I.N.F.N. in Italy, has a sensitive mass of about 250 kg highly radiopure NaI(Tl). It is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one (the first generation experiment having an exposed mass of about 100 kg) have cumulatively released so far the results obtained with the data collected over 13 annual cycles; the total exposure is 1.17 ton × yr. They give a model independent evidence of the presence of DM particles in the galactic halo at 8.9 σ C.L. on the basis of the investigated DM signature. Few aspects of the obtained results are summarized and some comments addressed.


Sign in / Sign up

Export Citation Format

Share Document