scholarly journals Formation of massive globular clusters with dark matter and its implication on dark matter annihilation

2020 ◽  
Vol 496 (1) ◽  
pp. L70-L74
Author(s):  
Henriette Wirth ◽  
Kenji Bekki ◽  
Kohei Hayashi

ABSTRACT Recent observational studies of γ-ray emission from massive globular clusters (GCs) have revealed possible evidence of dark matter (DM) annihilation within GCs. It is, however, still controversial whether the emission comes from DM or from millisecond pulsars. We here present the new results of numerical simulations, which demonstrate that GCs with DM can originate from nucleated dwarfs orbiting the ancient Milky Way. The simulated stripped nuclei (i.e. GCs) have the central DM densities ranging from 0.1 to several M⊙ pc−3, depending on the orbits and the masses of the host dwarf galaxies. However, GCs born outside the central regions of their hosts can have no/little DM after their hosts are destroyed and the GCs become the Galactic halo GCs. These results suggest that only GCs originating from stellar nuclei of dwarfs can possibly have DM. We further calculate the expected γ-ray emission from these simulated GCs and compare them to observations of ω Cen. Given the large range of DM densities in the simulated GCs, we suggest that the recent possible detection of DM annihilation from GCs should be more carefully interpreted.

Author(s):  
Jacco Th. van Loon

I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.


2019 ◽  
Vol 490 (1) ◽  
pp. 962-977 ◽  
Author(s):  
Alex Fitts ◽  
Michael Boylan-Kolchin ◽  
Brandon Bozek ◽  
James S Bullock ◽  
Andrew Graus ◽  
...  

ABSTRACT We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_{\rm halo} \approx 10^{10}\, {\rm M}_{\odot }$ at z = 0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2 < 500 pc) have lower σ⋆/Vmax ratios, reinforcing the idea that smaller dwarfs may reside in haloes that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in ΛCDM. The V1/2–r1/2 relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Overall, the inclusion of baryons substantially reduces any distinct signatures of dark matter physics in the observable properties of dwarf galaxies. Spatially resolved rotation curves in the central regions (<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2 values can only originate from dark matter self-interactions.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Michael Kuhlen

Dark Matter annihilation holds great potential for directly probing the clumpiness of the Galactic halo that is one of the key predictions of the Cold Dark Matter paradigm of hierarchical structure formation. Here we review the -ray signal arising from dark matter annihilation in the centers of Galactic subhalos. We consider both known Galactic dwarf satellite galaxies and dark clumps without a stellar component as potential sources. Utilizing theVia Lactea IInumerical simulation, we estimate fluxes for 18 Galactic dwarf spheroidals with published central densities. The most promising source is Segue 1, followed by Ursa Major II, Ursa Minor, Draco, and Carina. We show that if any of the known Galactic satellites can be detected, then at least ten times more subhalos should be visible, with a significant fraction of them being dark clumps.


2014 ◽  
Vol 30 ◽  
pp. 1460256 ◽  
Author(s):  
Pierre Salati

The astronomical dark matter is an essential component of the Universe and yet its nature is still unresolved. It could be made of neutral and massive elementary particles which are their own antimatter partners. These dark matter species undergo mutual annihilations whose effects are briefly reviewed in this article. Dark matter annihilation plays a key role at early times as it sets the relic abundance of the particles once they have decoupled from the primordial plasma. A weak annihilation cross section naturally leads to a cosmological abundance in agreement with observations. Dark matter species subsequently annihilate — or decay — during Big Bang nucleosynthesis and could play havoc with the light element abundances unless they offer a possible solution to the 7 Li problem. They could also reionize the intergalactic medium after recombination and leave visible imprints in the cosmic microwave background. But one of the most exciting aspects of the question lies in the possibility to indirectly detect the dark matter species through the rare antimatter particles — antiprotons, positrons and antideuterons — which they produce as they currently annihilate inside the galactic halo. Finally, the effects of dark matter annihilation on stars is discussed.


2004 ◽  
Vol 220 ◽  
pp. 353-358 ◽  
Author(s):  
Alberto D. Bolatto ◽  
Joshua D. Simon ◽  
Adam Leroy ◽  
Leo Blitz

We present observations and analysis of rotation curves and dark matter halo density profiles in the central regions of four nearby dwarf galaxies. This observing program has been designed to overcome some of the limitations of other rotation curve studies that rely mostly on longslit spectra. We find that these objects exhibit the full range of central density profiles between ρ ∝ r0 (constant density) and ρ ∝ r–1 (NFW halo). This result suggests that there is a distribution of central density slopes rather than a unique halo density profile.


2019 ◽  
Vol 488 (3) ◽  
pp. 2977-2988 ◽  
Author(s):  
M D A Orkney ◽  
J I Read ◽  
J A Petts ◽  
M Gieles

Abstract Bursty star formation in dwarf galaxies can slowly transform a steep dark matter cusp into a constant density core. We explore the possibility that globular clusters (GCs) retain a dynamical memory of this transformation. To test this, we use the nbody6df code to simulate the dynamical evolution of GCs, including stellar evolution, orbiting in static and time-varying potentials for a Hubble time. We find that GCs orbiting within a cored dark matter halo, or within a halo that has undergone a cusp-core transformation, grow to a size that is substantially larger (Reff > 10 pc) than those in a static cusped dark matter halo. They also produce much less tidal debris. We find that the cleanest signal of an historic cusp-core transformation is the presence of large GCs with tidal debris. However, the effect is small and will be challenging to observe in real galaxies. Finally, we qualitatively compare our simulated GCs with the observed GC populations in the Fornax, NGC 6822, IKN, and Sagittarius dwarf galaxies. We find that the GCs in these dwarf galaxies are systematically larger (〈Reff〉 ≃ 7.8 pc), and have substantially more scatter in their sizes than in situ metal-rich GCs in the Milky Way and young massive star clusters forming in M83 (〈Reff〉 ≃ 2.5 pc). We show that the size, scatter, and survival of GCs in dwarf galaxies are all consistent with them having evolved in a constant density core, or a potential that has undergone a cusp-core transformation, but not in a dark matter cusp.


2015 ◽  
Vol 607 ◽  
pp. 012015 ◽  
Author(s):  
Veniamin Berezinsky ◽  
Vyachelav Dokuchaev ◽  
Yury Eroshenko

Sign in / Sign up

Export Citation Format

Share Document