scholarly journals Detecting Cold Dark Matter Candidates

1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.

2000 ◽  
Vol 15 (19) ◽  
pp. 1221-1225 ◽  
Author(s):  
G. B. TUPPER ◽  
R. J. LINDEBAUM ◽  
R. D. VIOLLIER

We examine the phenomenology of a low-energy extension of the Standard Model, based on the gauge group SU (3) ⊗ SU (2) ⊗ U (1)⊗ SO (3), with SO(3) operating in the shadow sector. This model offers vacuum νe → νs and νμ → ντ oscillations as the solution of the solar and atmospheric neutrino problems, and it provides a neutral heavy shadow lepton X that takes the role of a cold dark matter particle.


2004 ◽  
Vol 13 (10) ◽  
pp. 2127-2159 ◽  
Author(s):  
R. BERNABEI ◽  
P. BELLI ◽  
F. CAPPELLA ◽  
R. CERULLI ◽  
F. MONTECCHIA ◽  
...  

The DAMA/NaI experiment (≃100 kg highly radiopure NaI(Tl)) was proposed, designed and realized to effectively investigate in a model-independent way the presence of a Dark Matter particle component in the galactic halo by exploiting the annual modulation signature. With a total exposure of 107731 kg · day, collected over seven annual cycles deep underground at the Gran Sasso National Laboratory of the I.N.F.N., it has pointed out — at 6.3σC.L. — an effect which satisfies all the peculiarities of the signature and neither systematic effects nor side reactions able to mimic the signature were found. Moreover, several (but still few with respect to the possibilities) corollary model dependent quests for the candidate particle have been carried out. In this paper the obtained results are summarized and some perspectives are discussed at some extent.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 65 ◽  
Author(s):  
Martin Stref ◽  
Thomas Lacroix ◽  
Julien Lavalle

Dark-matter subhalos, predicted in large numbers in the cold-dark-matter scenario, should have an impact on dark-matter-particle searches. Recent results show that tidal disruption of these objects in computer simulations is overefficient due to numerical artifacts and resolution effects. Accounting for these results, we re-estimated the subhalo abundance in the Milky Way using semianalytical techniques. In particular, we showed that the boost factor for gamma rays and cosmic-ray antiprotons is increased by roughly a factor of two.


2008 ◽  
Vol 120 (4) ◽  
pp. 042013 ◽  
Author(s):  
H T Wong ◽  
M Deniz ◽  
H B Li ◽  
S K Lin ◽  
S T Lin ◽  
...  

2007 ◽  
Vol 22 (25n28) ◽  
pp. 2113-2120
Author(s):  
HANG BAE KIM

Light dark matter aims at explaining the 511 keV γ-ray line emission from the galactic bulge as well as cold dark matter in our universe. The former is achieved via the annihilations or decays of light dark matter particles, which implies interesting observational consequences in addition to 511 keV γ-rays. We consider the axino in the 1 ~ 10 MeV mass range as the light dark matter particle and discuss the particle physics models for it, its cosmological production, and its decay arising from R-parity violation. For additional observational signals, we consider the connection to the neutrino data made by bilinear R-parity violations and the continuum γ-ray emission from light dark matter particles.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1777-1786 ◽  
Author(s):  
PIERO ULLIO

We consider the hypothesis that dark matter is made of weakly interacting massive particles (WIMPs) and describe how their pair annihilation in the galactic halo generates exotic cosmic ray fluxes. Features for generic WIMP models are reviewed, pointing out cases in which clear signatures arise. Implications from available and upcoming measurements are discussed.


2011 ◽  
Vol 20 (01) ◽  
pp. 17-22 ◽  
Author(s):  
I. B. KHRIPLOVICH

We consider the capture of galactic dark matter by the solar system, due to the gravitational three-body interaction of the Sun, a planet, and a dark matter particle. Simple estimates are presented for the capture cross-section, as well as for the density and velocity distributions of captured dark matter particles close to the Earth.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Masroor H. S. Bukhari ◽  
Zahoor H. Shah

A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated tunnel diode (TD) and GaAs HEMT/HFET (High-Electron Mobility Transistor/Heterogeneous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior signal-to-noise ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne read-out. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.


Sign in / Sign up

Export Citation Format

Share Document