dark matter particle
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Nicola C Amorisco ◽  
James Nightingale ◽  
Qiuhan He ◽  
Aristeidis Amvrosiadis ◽  
Xiaoyue Cao ◽  
...  

Abstract A defining prediction of the cold dark matter (CDM) cosmological model is the existence of a very large population of low-mass haloes. This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in principle, be distinguished observationally because halos along the line-of-sight can perturb galaxy-galaxy strong gravitational lenses. Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock lensed images. Contrary to previous studies, we find that halos are harder to detect when they are either behind or in front of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: detectable haloes are systematically high-concentration haloes, and accounting for the scatter in the mass-concentration relation boosts the expected number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude more stringent than previously appreciated.


2021 ◽  
Author(s):  
Francesca Alemanno ◽  
Qi An ◽  
Philipp Azzarello ◽  
Felicia Carla Tiziana Barbato ◽  
Paolo Bernardini ◽  
...  

2021 ◽  
Vol 920 (2) ◽  
pp. L43
Author(s):  
Francesca Alemanno ◽  
Qi An ◽  
Philipp Azzarello ◽  
Felicia Carla Tiziana Barbato ◽  
Paolo Bernardini ◽  
...  

2021 ◽  
Author(s):  
ZhiHui Xu ◽  
Cai ◽  
Chang ◽  
Hu ◽  
Jiang ◽  
...  

2021 ◽  
Author(s):  
Zhao-Qiang Shen ◽  
Kai-Kai Duan ◽  
Zun-Lei Xu ◽  
Xiang Li ◽  
Qiang Yuan

2021 ◽  
Author(s):  
Nicolo' Masi

Abstract In this article I propose a new criterion to individuate the origin and the properties of the dark matter particle sector. The emerging candidates come from a straightforward algebraic conjecture: the symmetries of physical microscopic forces originate from the automorphism groups of main Cayley–Dickson algebras, from complex numbers to octonions and sedenions. This correspondence leads to a natural enlargement of the Standard Model color sector, from a SU(3) gauge group to an exceptional Higgs-broken G(2) group, following the octonionic automorphism relation guideline. In this picture, dark matter is a relic heavy G(2)-gluons ensemble, separated from the particle dynamics of the Standard Model due to the high mass scale of its constituents.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Venno Vipp ◽  
Andi Hektor ◽  
Gert Hütsi

Author(s):  
Jenny G Sorce ◽  
Yohan Dubois ◽  
Jérémy Blaizot ◽  
Sean L McGee ◽  
Gustavo Yepes ◽  
...  

Abstract At ∼16-17 Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally-driven formation scenarios arose within the past decade to explain the properties of galaxies that entered the cluster recently and the nature of the last significant merger that the cluster underwent. Confirming these scenarios requires extremely faithful numerical counterparts of the cluster. This paper presents the first Clone, Constrained LOcal and Nesting Environment, simulation of the Virgo cluster within a ∼15 Mpc radius sphere. This cosmological hydrodynamical simulation, with feedback from supernovae and active galactic nuclei, with a ∼3 × 107 M⊙ dark matter particle mass and a minimum cell size of 350 pc in the zoom region, reproduces Virgo within its large scale environment unlike a random cluster simulation. Overall the distribution of the simulated galaxy population matches the observed one including M87. The simulated cluster formation reveals exquisite agreements with observationally-driven scenarios: within the last Gigayear, about 300 small galaxies (M*>107 M⊙) entered the cluster, most of them within the last 500 Myr. The last significant merger event occurred about 2 Gigayears ago: a group with a tenth of the mass of today’s cluster entered from the far side as viewed from the Milky Way. This excellent numerical replica of Virgo will permit studying different galaxy type evolution (jellyfish, backsplash, etc.) as well as feedback phenomena in the cluster core via unbiased comparisons between simulated and observed galaxies and hot gas phase profiles to understand this great physics laboratory.


Sign in / Sign up

Export Citation Format

Share Document