Effect of surface tension on the onset of convection in a double‐diffusive layer

1992 ◽  
Vol 4 (11) ◽  
pp. 2360-2367 ◽  
Author(s):  
C. F. Chen ◽  
T. F. Su
1995 ◽  
Vol 303 ◽  
pp. 1-21 ◽  
Author(s):  
J. Tanny ◽  
C. C. Chen ◽  
C. F. Chen

The effect of surface tension on the onset of convection in horizontal double-diffusive layer was studied both experimentally and by linear stability analysis. The experiments were conducted in a rectangular tank with base dimension of 25×13 cm and 5 cm in height. A stable solute (NaCl) stratification was first established in the tank, and then a vertical temperature gradient was imposed. Vertical temperature and concentration profiles were measured using a thermocouple and a conductivity probe and the flow patterns were visualized by a schlieren system. Two types of experiments were carried out which illustrate the effect of surface tension on the onset of convection. In the rigid–rigid experiments, when the critical thermal Rayleigh number, RT, is reached, large double-diffusive plumes were seen simultaneously to rise from the heated bottom and descend from the cooled top. In the rigid–free experiments, owing to surface tension effects, the first instability onset was of the Marangoni type. Well-organized small plumes were seen to emerge and persist close to the top free surface at a relatively small RTM (where subscript M denotes ‘Marangoni’). At larger RTt > RTM (where subscript t denotes ‘top’) these plumes evolved into larger double-diffusive plumes. The onset of double-diffusive instability at the bottom region occurred at a still higher RTb > RTt (where subscript b denotes ‘bottom‘). A series of stability experiments was conducted for a layer with an initial top concentration of 2 wt% and different concentration gradients. The stability map shows that in the rigid–free case the early Marangoni instability in the top region reduces significantly the critical RT for the onset of double-diffusive convection. Compared with the rigid–rigid case, the critical RT in the top region is reduced by about 60% and in the bottom region by about 30%. The results of the linear stability analysis, which takes into account both surface tension and double-diffusive effects, are in general agreement with the experiments. The analysis is then applied to study the stability characteristics of such a layer as gravity is reduced to microgravity level. Results show that even at 10 −4g0, where g0 is the gravity at sea level, the double-diffusive effect is of equal importance to the Marangoni effect.


2019 ◽  
Vol 29 (7) ◽  
pp. 629-654
Author(s):  
Zehao Feng ◽  
Shangqing Tong ◽  
Chenglong Tang ◽  
Cheng Zhan ◽  
Keiya Nishida ◽  
...  

2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


Author(s):  
Christopher C. Green ◽  
Christopher J. Lustri ◽  
Scott W. McCue

New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry.


Sign in / Sign up

Export Citation Format

Share Document