hele shaw cell
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 101)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
Xiaofeng Yang

We consider the numerical approximation of the binary fluid surfactant phase-field model confined in a Hele-Shaw cell, where the system includes two coupled Cahn-Hilliard equations and Darcy equations. We develop a fully-discrete finite element scheme with some desired characteristics, including linearity, second-order time accuracy, decoupling structure, and unconditional energy stability. The scheme is constructed by combining the projection method for the Darcy equation, the quadratization approach for the nonlinear energy potential, and a decoupling method of using a trivial ODE built upon the ``{zero-energy-contribution}" feature. The advantage of this scheme is that not only can all variables be calculated in a decoupled manner, but each equation has only constant coefficients at each time step. We strictly prove that the scheme satisfies the unconditional energy stability and give a detailed implementation process. Various numerical examples are further carried out to prove the effectiveness of the scheme, in which the benchmark Saffman-Taylor fingering instability problems in various flow regimes are simulated to verify the weakening effects of surfactant on surface tension.


2021 ◽  
Vol 63 ◽  
pp. 269-307
Author(s):  
Liam C. Morrow ◽  
Timothy J. Moroney ◽  
Michael C. Dallaston ◽  
Scott W. McCue

The classical model for studying one-phase Hele-Shaw flows is based on a highly nonlinear moving boundary problem with the fluid velocity related to pressure gradients via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping techniques and boundary integral methods can be readily applied to study the key interfacial dynamics, including the Saffman–Taylor instability and viscous fingering patterns. As well as providing a brief review of these key issues, we present a flexible numerical scheme for studying both the standard and nonstandard Hele-Shaw flows. Our method consists of using a modified finite-difference stencil in conjunction with the level-set method to solve the governing equation for pressure on complicated domains and track the location of the moving boundary. Simulations show that our method is capable of reproducing the distinctive morphological features of the Saffman–Taylor instability on a uniform computational grid. By making straightforward adjustments, we show how our scheme can easily be adapted to solve for a wide variety of nonstandard configurations, including cases where the gap between the plates is linearly tapered, the plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular velocity.   doi:10.1017/S144618112100033X


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6432
Author(s):  
Hamid Ait Abderrahmane ◽  
Shahid Rabbani ◽  
Mohamed Sassi

We present a numerical study of viscous fingering occurring during the displacement of a high viscosity fluid by low viscosity fluid in a circular Hele-Shaw cell. This study assumes that the fluids are miscible and considers the effects of inertial forces on fingering morphology, mixing, and displacement efficiency. This study shows that inertia has stabilizing effects on the fingering instability and improves the displacement efficiency at a high log-mobility-viscosity ratio between displacing and displaced fluids. Under certain conditions, inertia slightly reduces the finger-split phenomenon and the mixing between the two fluids.


2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Clément Toupoint ◽  
Sylvain Joubaud ◽  
Bruce R. Sutherland
Keyword(s):  
Break Up ◽  

2021 ◽  
Vol 6 (9) ◽  
Author(s):  
Zhong Zheng ◽  
Aditya A. Ghodgaonkar ◽  
Ivan C. Christov

2021 ◽  
Vol 33 (9) ◽  
pp. 093104
Author(s):  
Weicen Wang ◽  
Chunwei Zhang ◽  
Anindityo Patmonoaji ◽  
Yingxue Hu ◽  
Shintaro Matsushita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document