onset of convection
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 59)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Paul Fruton ◽  
Aziza Nauruzbaeva ◽  
Henri Bataller ◽  
Cédric Giraudet ◽  
Alberto Vailati ◽  
...  

Abstract The sequestration of carbon dioxide (CO2) through storage into deep saline aquifers represents an indispensable support technology to achieve the zero-carbon target necessary to mitigate the impact of CO2 on climate change. The effectiveness of the sequestration process, partly driven by the convective dissolution of CO2 in brine, is nowadays well characterized for two-dimensional geometries, low permeabilities, and small pressures of injection of CO2. However, reliable predictions of process-efficiency are missing because of the lack of full understanding of the three-dimensional (3D) spatio-temporal behaviour of CO2-rich convective fingers in brine over a large range of injection pressures. Here, we show that the convective dissolution is determined by the instability of the boundary layer formed at the interface between the two phases and is totally independent of the overall vertical size. Experiments were conducted over a broad range of injection pressures, close to process-relevant conditions. The results show the formation of complex 3D structures, including interconnecting stream tubes at the CO2-liquid interface, which could not be detected in previous 2D Hele-Shaw studies, and fingerings. A scale-free theoretical modelling of the convective process allows us to remap our laboratory results to length-scales of relevance for geological reservoirs. The experiments and the model show that the times needed for the onset of convection and the convective flux are independent of the system size.


Author(s):  
Hiya Mondal ◽  
Alaka Das

Abstract We have constructed an energy-conserving sixteen mode dynamical system to model hexagonal pattern in Rayleigh-Bénard convection of Boussinesq fluids with symmetric stress-free thermally conducting boundaries. The model shows stable roll pattern at the onset of convection. Hexagon is found to appear in the system via sausage and (or) stationary rhombus patterns. Both up and down hexagons arise periodically or chaotically with roll, sausage and rhombus patterns. Hexagonal patterns exist for all values of the Prandtl number, 1 ≤ Pr ≤ 5 explored here. However the pattern is more prominent for small Pr and k < kc , where k denotes the wave number. The plot of Nusselt number matches with previous theoretical result. In dissipationless limit, the total energy and the unavailable energy are constants though the kinetic energy, the potential energy and the available energy vary with time. The derived model does not diverge for large values of Rayleigh number Ra.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1687
Author(s):  
Ricardo Fonseca ◽  
Diana Francis ◽  
Michael Weston ◽  
Narendra Nelli ◽  
Sufian Farah ◽  
...  

The Weather Research and Forecasting (WRF) model is used to investigate convection–aerosol interactions in the United Arab Emirates (UAE) for a summertime convective event. Both an idealized and climatological aerosol distributions are considered. The convection on 14 August 2013 was triggered by the low-level convergence of the cyclonic circulation associated with the Arabian Heat Low (AHL) and the daytime sea-breeze circulation. Numerical experiments reveal a high sensitivity to aerosol properties. In particular, replacing 20% of the rural aerosols by carbonaceous particles has a comparable impact on the surface radiative fluxes to increasing the aerosol loading by a factor of 10. In both cases, the UAE-averaged net shortwave flux is reduced by ~90 W m−2 while the net longwave flux increases by ~51 W m−2. However, when the aerosol composition is changed, WRF generates 20% more precipitation than when the aerosol loading is increased, due to a broader and weaker AHL. The surface downward and upward shortwave and upward longwave radiation fluxes are found to scale linearly with the aerosol loading. An increase in the amount of aerosols also leads to drier conditions and a delay in the onset of convection due to changes in the AHL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefan Reich ◽  
Sebastian Schäffer ◽  
Martin Lueck ◽  
Matthias Wickert ◽  
Jens Osterholz

AbstractWhen laser beams propagate through media with non-vanishing absorption, the media is heated resulting in a change of the refractive index, which can lead to thermal lensing and thermal blooming. However, experimental details about both phenomena for propagations in water are lacking, especially for high-power lasers in the kilowatt range. We show that significant thermal lensing occurs only for high input powers before the onset of convective flow, while for low input powers, no strong thermal lens arises. After the onset of water flow, thermal blooming occurs at low input powers comparable to that known for propagations over kilometres in the air. However, for high input powers a thermal blooming on a qualitatively higher level is shown. By wavefront sensing, the change of refractive index distribution in water is investigated. This clearly shows the fast development of a strong thermal lens for high input powers and the onset of convection. Furthermore, a qualitatively good agreement of the accompanying simulations is observed. It is found that the absorption coefficient is linear with a value of $$\mu ={13.7}\,{\mathrm{m}^{-1}}$$ μ = 13.7 m - 1 at least up to 7.5 kW, i.e. 8 $$\mathrm{kW/cm}^2$$ kW / cm 2 . However, the directed transmission into an aperture is only constant before any thermal lensing of blooming occurs.


2021 ◽  
pp. 1-49
Author(s):  
Chelsea E. Snide ◽  
Ángel F. Adames ◽  
Scott W. Powell ◽  
Víctor C. Mayta

AbstractThe initiation of the Madden-Julian Oscillation over the Indian Ocean is examined through the use of a moisture budget that applies a version of the weak temperature gradient (WTG) approximation that does not neglect dry adiabatic vertical motions. Examination of this budget in ERA-Interim reveals that horizontal moisture advection and vertical advection by adiabatic lifting govern the moistening of the troposphere for both primary and successive MJO initiation events. For both types of initiation events, horizontal moisture advection peaks prior to the maximum moisture tendency, while adiabatic lifting peaks after the maximum moisture tendency. Once convection initiates, moisture is maintained by anomalous radiative and adiabatic lifting. Adiabatic lifting during successive MJO initiation is attributed to the return of the circumnavigating circulation from a previous MJO event, while in primary events the planetary-scale circulation appears to originate over South America. Examination of the same budget with data from the DYNAMO northern sounding array shows that adiabatic lifting contributes significantly to MJO maintenance, with a contribution that is comparable to that of surface heat fluxes. However, results from the DYNAMO data disagree with those from ERA-Interim over the importance of adiabatic lifting to the moistening of the troposphere prior to the onset of convection. In spite of these differences, the results from the two data sets show that small departures from WTG balance in the form of dry adiabatic motions cannot be neglected when considering MJO convective onset.


2021 ◽  
Vol 925 ◽  
Author(s):  
Jonathan M. Barnard

An experimental study on stratified particle-laden plumes is presented and five steady-state flow regimes have been identified. The steady-state behaviour of the plume is directly related to the magnitude of the convective velocity associated with particle-induced instabilities, $U_c$ , in relation to the terminal settling velocity of each individual particle, $u_{st}$ . When $u_{st}>U_c$ , the ratio of particle to fluid buoyancy flux at the source, $P$ , becomes important. For $P<0.2$ , the plume dynamics appears very similar to a single-phase plume as particle recycling has minimal impact on the steady-state plume height. When $P>0.2$ , the plume height decreases significantly, creating an anvil-shaped intrusion similar to those associated with explosive volcanic eruptions. Importantly, the measured steady-state heights of plumes within this settling regime validate the collapse model of Apsley & Lane-Serff (J. Fluid Mech., vol. 865, 2019, pp. 904–927). When $u_{st}\leqslant U_c$ , particle re-entrainment behaviour changes significantly and the plume dynamics becomes independent of $P$ . When $u_{st}\approx U_c$ , a trough of fluid becomes present in the sedimenting veil due to a significant flux of descending particles at the edge of the plume. Once $u_{st}< U_c$ , the particles spreading in the intrusion become confined to a defined radius around the plume due to the significant ambient convection occurring beneath the current. For $u_{st}\ll U_c$ , or in the case of these experiments, when $U_c\geqslant 1\ \text{cm s}^{-1}$ , ambient convection becomes so strong that intrusion fluid is pulled down to the plume source, creating a flow reminiscent of a stratified fountain with secondary intrusions developing between the original current and the tank floor. Through an extension of the work of Cardoso & Zarrebini (Chem. Engng Sci., vol. 56, issue 11, 2001a, pp. 3365–3375), an analytical expression is developed to determine the onset of convection in the environment beyond the edge of the plume, which for a known particle settling velocity, can be used to characterise a plume's expected settling regime. In all plume regimes, the intrusion fluid is observed to rise in the environment following the sedimentation of particles and a simple model for the change in intrusion fluid height has been developed using the steady-state particle concentration at the spreading level.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Murugan ◽  
R. Sekar

Purpose The effect of magnetic field dependent (MFD) viscosity on the onset of convection in a ferromagnetic fluid layer heated from below saturating rotating porous medium in the presence of vertical magnetic field is investigated theoretically by using Darcy model. The resulting eigen value problem is solved using the regular perturbation technique. Both stationary and oscillatory instabilities have been obtained. It is found that increase in MFD viscosity and increase in magnetic Rayleigh number is to delay the onset of ferroconvection, while the nonlinearity of fluid magnetization has no influence on the stability of the system. Design/methodology/approach The thermal perturbation method is employed for analytical solution. A theory of linear stability analysis and normal mode technique have been carried out to analyze the onset of convection for a fluid layer contained between two impermeable boundaries for which an exact solution is obtained. Findings The conditions for the system to stabilize both by stationary and oscillatory modes are studied. Even for the oscillatory system of particular frequency dictated by physical conditions, the critical Rayleigh numbers for oscillatory mode of the system were found to be greater than for the stationary mode. The system gets destabilized for various physical parameters only through stationary mode. Hence, the analysis is restricted to the stationary mode. To the Coriolis force, the Taylor number Ta is calculated to discuss the results. It is found that the system stabilizes through stationary mode for values of and for oscillatory instability is favored for Ta > 104. Therefore the Taylor number Ta leads to stability of the system. For larger rotation, magnetization leads to destabilization of the system. The MFD viscosity is found to stabilize the system. Originality/value This research paper is new and original.


Author(s):  
Florinda Capone ◽  
Maurizio Gentile ◽  
Jacopo A. Gianfrani

Abstract The onset of thermal convection in an anisotropic horizontal porous layer heated from below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is studied. Linear and nonlinear stability analysis of the conduction solution is performed. Coincidence between the linear instability and the global nonlinear stability thresholds with respect to the L2—norm is proved. Article Highlights A necessary and sufficient condition for the onset of convection in a rotating anisotropic porous layer has been obtained. It has been proved that convection can occur only through a steady motion. A detailed proof is reported thoroughly. Numerical analysis shows that permeability promotes convection, while thermal conductivities and rotation stabilize conduction.


2021 ◽  
Author(s):  
Ricardo Fonseca ◽  
Diana Francis ◽  
Michael Weston ◽  
Narendra Nelli ◽  
Sufian Farah ◽  
...  

Abstract. The Weather Research and Forecasting (WRF) model is used to investigate convection-aerosol interactions in the United Arab Emirates for a summertime convective event. Both an idealised and scaled versions of a 7-year climatological aerosol distribution are considered. The convection on 14 August 2013 was triggered by the low-level convergence of the circulation associated with the Arabian Heat Low (AHL) and the daytime sea-breeze circulation. The cold pools associated with the convective events, as well as the low-level wind convergence along the Intertropical Discontinuity (ITD) earlier in the day, explain the dustier environment, with Aerosol Optical Depths (AODs) in excess of two. Due to a colder surface and air temperature, the AHL is incorrectly represented in WRF, which leads to a mismatch between the observed and modelled clouds and precipitation. Employing interior nudging in the outermost grids of the three-nested simulation has a small but positive impact on the model predictions of the innermost nest. This is because the higher temperatures from more accurate boundary conditions are offset by colder temperatures from locally enhanced precipitation, the latter arising from a shift in the position of the AHL. Numerical experiments revealed a high sensitivity to the aerosol properties. In particular, replacing 20 % of the rural aerosols by carbonaceous particles has an impact on the surface radiative fluxes comparable to increasing the aerosol loading by a factor of 10, with a daily-averaged reduction in the UAE-averaged net shortwave radiation flux of ~90 W m−2 and an increase in the net longwave radiation flux of ~51 W m−2. However, in the former, WRF generates 20 % more precipitation than in the latter, due to a broader and weaker AHL. The surface downward and upward shortwave and upward longwave radiation fluxes are found to scale linearly with the aerosol loading, while the downward longwave radiation flux varies by less than ±12 W m−2 when the aerosol amount and/or properties are changed. An increase in the aerosol loading also leads to drier conditions due to a shift in the position of the AHL and rainfall occurring in a drier region, with a domain-wise decrease in the daily accumulated rainfall of 16 % when the aerosol loading is increased by a factor of 10. In addition, the onset of convection is also delayed.


Sign in / Sign up

Export Citation Format

Share Document