Steady-state response of the electron distribution function to an applied electric field

1980 ◽  
Vol 23 (5) ◽  
pp. 921 ◽  
Author(s):  
J. C. Wiley ◽  
F. L. Hinton
1980 ◽  
Vol 24 (3) ◽  
pp. 503-514 ◽  
Author(s):  
V. J. Žigman ◽  
B. S. Milić

The properties of certain wave modes excited in a weakly ionized plasma placed in an external d.c. electric field are analyzed from the standpoint of the linearized kinetic equation, the electron steady-state distribution function being taken in the form of the extended Margenau–Davydov and, in particular, Druyvesteinian. The presence of absolute stability cones formed by certain propagation directions is found. The corresponding critical values of the electron drift, destabilizing each of the modes considered, is also evaluated for a plasma with a Druyvesteinian distribution.


1992 ◽  
Vol 10 (3) ◽  
pp. 461-471 ◽  
Author(s):  
L. Drska ◽  
J. Limpouch ◽  
R. Liska

The interaction of ultrashort laser pulses with a fully ionized plasma is investigated in the plane geometry by means of numerical simulation. The impact of the space oscillations in the amplitude of the laser electric field on the shape of the electron distribution function, on laser beam absorption, and on electron heat transport is demonstrated. Oscillations in the absorption rate of laser radiation with the minima coincident to the maxima of the laser electric field lead to a further decrease in the absorption of laser radiation. Heat flux in the direction of increasing temperature in the underdense region is caused by the modification of the electron distribution function and by the density gradient. A limitation of heat flux to the overdense plasma isobserved with the flux limiter in range 0.03–0.08, growing moderately with the intensity 1014–1016 W/cm2 of the incident 1.2-ps laser pulse.


Sign in / Sign up

Export Citation Format

Share Document