Electron distribution functions in a current sheet

1983 ◽  
Vol 26 (7) ◽  
pp. 1949 ◽  
Author(s):  
R. L. Stenzel
1998 ◽  
Vol 08 (PR7) ◽  
pp. Pr7-33-Pr7-42
Author(s):  
L. L. Alves ◽  
G. Gousset ◽  
C. M. Ferreira

2021 ◽  
Vol 28 (8) ◽  
pp. 082102
Author(s):  
A. L. Milder ◽  
J. Katz ◽  
R. Boni ◽  
J. P. Palastro ◽  
M. Sherlock ◽  
...  

2016 ◽  
Vol 10 (7) ◽  
pp. 709-718
Author(s):  
Honglei Wang ◽  
Kunde Yang ◽  
Kun Zheng ◽  
Yixin Yang ◽  
Yuanliang Ma

1996 ◽  
Vol 53 (15) ◽  
pp. 9847-9851 ◽  
Author(s):  
E. D. Grann ◽  
K. T. Tsen ◽  
D. K. Ferry

2017 ◽  
Vol 52 (4) ◽  
pp. 463-467 ◽  
Author(s):  
S. D. Kovalevskaya
Keyword(s):  

1995 ◽  
Vol 34 (Part 1, No. 9A) ◽  
pp. 4977-4982 ◽  
Author(s):  
T. E. Sheridan ◽  
M. J. Goeckner ◽  
J. Goree

2021 ◽  
Author(s):  
Zhi-Yang Liu ◽  
Qiu-Gang Zong ◽  
Michel Blanc

<p>Jupiter's magnetosphere contains a current sheet of huge size near its equator. The current sheet not only mediates the global mass and energy cycles of Jupiter's magnetosphere, but also provides an occurring place for many localized dynamic processes, such as reconnection and wave-particle interaction. To correctly evaluate its role in these processes, a statistical description of the current sheet is required. To this end, here we conduct statistics on Jupiter's current sheet, with four-year Juno data recorded in the 20-100 Jupiter radii, post-midnight magnetosphere. The results suggest a thin current sheet whose thickness is comparable with the gyro-radius of dominant ions. Magnetic fields in the current sheet decrease in power-law with increasing radial distances. At fixed energy, the flux of electrons and protons increases with decreasing radial distances. On the other hand, at fixed radial distances, the flux decreases in power-law with increasing energy. The flux also varies with the distances to the current sheet center. The corresponding relationship can be well described by Gaussian functions peaking at the current sheet center. In addition, the statistics show the flux of oxygen- and sulfur-group ions is comparable with the flux of protons at the same energy and radial distances, indicating the non-negligible effects of heavy ions on current sheet dynamics. From these results, a statistical model of Jupiter's current sheet is constructed, which provides us with a start point of understanding the dynamics of the whole Jupiter's magnetosphere.</p>


2021 ◽  
Author(s):  
Markku Alho ◽  
Markus Battarbee ◽  
Yann Pfau-Kempf ◽  
Urs Ganse ◽  
Lucile Turc ◽  
...  

<div> <p>Models of the geospace plasma environment have been proceeding towards more realistic descriptions of the solar wind—magnetosphere interaction, from gas-dynamic to MHD and hybrid ion-kinetic models such as the state-of-the-art Vlasiator model. Advances in computational capabilities have enabled global simulations of detailed physics, but the electron scale has so far been out of reach in a truly global setting. </p> </div><div> <p>In this work we present results from eVlasiator, an offshoot of the Vlasiator model, showing first results from a global 2D+3V kinetic electron geospace simulation. Despite truncation of some electron physics and use of ion-scale spatial resolution, we show that realistic electron distribution functions are obtainable within the magnetosphere and describe these in relation to MMS observations. Electron precipitation to the upper atmosphere from these velocity distributions is estimated.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document