On the two-dimensionality of the critical disturbances for stratified viscous plane parallel shear flows

1985 ◽  
Vol 28 (2) ◽  
pp. 751 ◽  
Author(s):  
Arne J. Pearlstein
2003 ◽  
Vol 125 (5) ◽  
pp. 795-803 ◽  
Author(s):  
S. Generalis ◽  
M. Nagata

The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.


2004 ◽  
Vol 332 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Masato Nagata ◽  
Sotos Generalis

2012 ◽  
Vol 707 ◽  
pp. 369-380 ◽  
Author(s):  
H. Vitoshkin ◽  
E. Heifetz ◽  
A. Yu. Gelfgat ◽  
N. Harnik

AbstractThe three-dimensional linearized optimal energy growth mechanism, in plane parallel shear flows, is re-examined in terms of the role of vortex stretching and the interplay between the spanwise vorticity and the planar divergent components. For high Reynolds numbers the structure of the optimal perturbations in Couette, Poiseuille and mixing-layer shear profiles is robust and resembles localized plane waves in regions where the background shear is large. The waves are tilted with the shear when the spanwise vorticity and the planar divergence fields are in (out of) phase when the background shear is positive (negative). A minimal model is derived to explain how this configuration enables simultaneous growth of the two fields, and how this mutual amplification affects the optimal energy growth. This perspective provides an understanding of the three-dimensional growth solely from the two-dimensional dynamics on the shear plane.


2014 ◽  
Vol 47 (1) ◽  
pp. 015504 ◽  
Author(s):  
Cédric Beaume ◽  
Edgar Knobloch ◽  
Gregory P Chini ◽  
Keith Julien

2019 ◽  
Vol 877 ◽  
pp. 1134-1162 ◽  
Author(s):  
Harry Lee ◽  
Shixiao Wang

A viscous extension of Arnold’s inviscid theory for planar parallel non-inflectional shear flows is developed and a viscous Arnold’s identity is obtained. Special forms of the viscous Arnold’s identity have been revealed that are closely related to the perturbation’s enstrophy identity derived by Synge (Proceedings of the Fifth International Congress for Applied Mechanics, 1938, pp. 326–332, John Wiley) (see also Fraternale et al., Phys. Rev. E, vol. 97, 2018, 063102). Firstly, an alternative derivation of the perturbation’s enstrophy identity for strictly parallel shear flows is acquired based on the viscous Arnold’s identity. The alternative derivation induces a weight function. Thereby, a novel weighted perturbation’s enstrophy identity is established, which extends the previously known enstrophy identity to include general streamwise translation-invariant shear flows. Finally, the validity of the enstrophy identity for parallel shear flows is rigorously examined and established under global nonlinear dynamics imposed with two classes of wall boundary conditions. As an application of the enstrophy identity, we quantitatively investigate the mechanism of linear instability/stability within the normal modal framework. The investigation reveals a subtle interaction between a critical layer and its adjacent boundary layer, which determines the stability nature of the disturbance. As an implementation of the relaxed wall boundary conditions imposed for the enstrophy identity, a control scheme is proposed that transitions the wall settings from the no-slip condition to the free-slip condition, through which a flow is stabilized quickly in an early stage of the transition.


Sign in / Sign up

Export Citation Format

Share Document