scholarly journals Erratum: “Laminar flow past a rotating circular cylinder” [Phys. Fluids 11, 3312 (1999)]

2000 ◽  
Vol 12 (1) ◽  
pp. 239-240
Author(s):  
Sangmo Kang ◽  
Haecheon Choi ◽  
Sangsan Lee
1999 ◽  
Vol 11 (11) ◽  
pp. 3312-3321 ◽  
Author(s):  
Sangmo Kang ◽  
Haecheon Choi ◽  
Sangsan Lee

This paper considers the two-dimensional flow past a circular cylinder immersed in a uniform stream, when the cylinder rotates about its axis so fast that separation in suppressed. The solution of the flow in the boundary layer on the cylinder is obtained in the form of a power series in the ratio of the stream velocity to the cylinder's peripheral velocity, and expressions are deduced for the value of the circulation and the torque on the cylinder. The terms calculated explicitly are sufficient to give reliable numerical values over the whole range of rotational speeds for which the postulate of non-separating flow is justifiable. The previously accepted theory, due to Prandtl, predicted that the circulation should not exceed a certain limit, while the present theory indicates that the circulation increases indefinitely with increase of rotaional speed. Strong arguments against the older theory are put forward, but the experimental evidence available is inconclusive.


2010 ◽  
Vol 18 (3) ◽  
Author(s):  
Pham Anh-Hung ◽  
Lee Chang-Yeol ◽  
Seo Jang-Hoon ◽  
Chun Ho-Hwan ◽  
Kim Hee-Jung ◽  
...  

Volume 4 ◽  
2004 ◽  
Author(s):  
Takao Fujita ◽  
Keizo Watanabe

Laminar drag reduction is achieved by using a hydrophobic surface. In this method, fluid slip is applied at the hydrophobic surface. An initial experiment to clarify for a laminar skin friction reduction was conducted using ducts with a highly water-repellent surface. The surface has a fractal-type structure with many fine grooves. Fluid slip at a hydrophobic surface has been analyzed by applying a new wet boundary condition. In this simulation, an internal flow is assumed to be a two-dimensional laminar flow in a rectangular duct and an external flow is assumed to be a two-dimensional laminar flow past a circular cylinder. The VOF technique has been used as the method for tracking gas-liquid interfaces, and the CSF model has been used as the method for modeling surface tension effects. The wet boundary condition for the hydrophobic property on the surface has been determined from the volume ratio in contact with water near the surface. The model with a stable gas-liquid interface and the experimental results of flow past a circular cylinder at Re = 250 without growing the Karman vortex street are made, and these results show that laminar drag reduction occurring due to fluid slip can be explained in this model.


2009 ◽  
Author(s):  
S. C. Luo ◽  
Y. T. Chew ◽  
T. T. L. Duong

2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


Sign in / Sign up

Export Citation Format

Share Document