Werner Heisenberg and the Beginning of Nuclear Physics

Physics Today ◽  
1985 ◽  
Vol 38 (11) ◽  
pp. 60-68 ◽  
Author(s):  
Arthur I. Miller
Author(s):  
Roger H. Stuewer

A large conference on nuclear physics was held in London and Cambridge from October 1–6, 1934. Six German refugee physicists were present, but Werner Heisenberg was not. Czech theoretical physicists Guido Beck and Kurt Sitte had proposed a theory of beta decay that challenged Fermi’s, which Beck presented but apparently gained no support for. On October 22, Fermi serendipitously discovered the efficaciousness of slow neutrons in producing nuclear reactions. Niels Bohr would be the greatest beneficiary of Fermi’s discovery. In 1935 Bohr, with the assistance of refugee Otto Robert Frisch, began to develop experimental nuclear physics at his institute, which after its inauguration in 1920 became a mecca for young physicists. On September 29, 1943, Bohr and his family were among the 7220 Danish and other Jews who were transported to Sweden in the greatest mass rescue operation of the war.


1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


Sign in / Sign up

Export Citation Format

Share Document