scholarly journals Algebraic structure and Poisson method for a weakly nonholonomic system

2011 ◽  
Vol 1 (2) ◽  
pp. 023001
Author(s):  
Fengxiang Mei ◽  
Huibin Wu
2013 ◽  
Vol 30 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Y.-L. Han ◽  
X.-X. Wang ◽  
M.-L. Zhang ◽  
L.-Q. Jia

ABSTRACTThe Lie symmetry and Hojman conserved quantity of Lagrange equations for a weakly nonholonomic system and its first-degree approximate holonomic system are studied. The differential equations of motion for the system are established. Under the special infinitesimal transformations of group in which the time is invariable, the definition of the Lie symmetry for the weakly nonholonomic system and its first-degree approximate holonomic system are given, and the exact and approximate Hojman conserved quantities deduced directly from the Lie symmetry are obtained. Finally, an example is given to study the exact and approximate Hojman conserved quantity for the system.


2010 ◽  
Vol 27 (8) ◽  
pp. 080202 ◽  
Author(s):  
Mei Feng-Xiang ◽  
Cui Jin-Chao ◽  
Chang Peng

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


Sign in / Sign up

Export Citation Format

Share Document