conserved quantity
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2910
Author(s):  
Umara Kausar ◽  
Tooba Feroze

It is known that corresponding to each Noether symmetry there is a conserved quantity. Another class of symmetries that corresponds to conserved quantities is the class of Mei symmetries. However, the two sets of symmetries may give different conserved quantities. In this paper, a procedure of finding approximate Mei symmetries and invariants of the perturbed/approximate Hamiltonian is presented that can be used in different fields of study where approximate Hamiltonians are under consideration. The results are presented in the form of theorems along with their proofs. A simple example of mechanics is considered to elaborate the method of finding these symmetries and the related Mei invariants. At the end, a comparison of approximate Mei symmetries and approximate Noether symmetries is also given. The comparison shows that there is only one common symmetry in both sets of symmetries. Hence, rest of the symmetries in the two sets correspond to two different sets of conserved quantities.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuan-Jing Song ◽  
Yao Cheng

Based on the generalized operators, Hamilton equation, Noether symmetry, and perturbation to Noether symmetry are studied. The main contents are divided into four parts, and every part includes two generalized operators. Firstly, Hamilton equations within generalized operators are established. Secondly, the Noether symmetry method and conserved quantity are studied. Thirdly, perturbation to the Noether symmetry and adiabatic invariant are presented. And finally, two applications are presented to illustrate the methods and results.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 40
Author(s):  
Sanjar Shaymatov ◽  
Farruh Atamurotov

We consider isofrequency pairing of geodesic orbits that share the same three orbital frequencies associated with Ωr^, Ωφ^, and Ωω^ in a particular region of parameter space around black string spacetime geometry. We study the effect of a compact extra spatial dimension on the isofrequency pairing of geodesic orbits and show that such orbits would occur in the allowed region when particles move along the black string. We find that the presence of the compact extra dimension leads to an increase in the number of the isofrequency pairing of geodesic orbits. Interestingly we also find that isofrequency pairing of geodesic orbits in the region of parameter space cannot be realized beyond the critical value Jcr≈0.096 of the conserved quantity of the motion arising from the compact extra spatial dimension.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jin-Yue Chen ◽  
Yi Zhang

The time-scale version of Noether symmetry and conservation laws for three Birkhoffian mechanics, namely, nonshifted Birkhoffian systems, nonshifted generalized Birkhoffian systems, and nonshitfed constrained Birkhoffian systems, are studied. Firstly, on the basis of the nonshifted Pfaff-Birkhoff principle on time scales, Birkhoff’s equations for nonshifted variables are deduced; then, Noether’s quasi-symmetry for the nonshifted Birkhoffian system is proved and time-scale conserved quantity is presented. Secondly, the nonshifted generalized Pfaff-Birkhoff principle on time scales is proposed, the generalized Birkhoff’s equations for nonshifted variables are derived, and Noether’s symmetry for the nonshifted generalized Birkhoffian system is established. Finally, for the nonshifted constrained Birkhoffian system, Noether’s symmetry and time-scale conserved quantity are proposed and proved. The validity of the result is proved by examples.


2021 ◽  
Vol 31 (04) ◽  
pp. 2150055
Author(s):  
Palanisamy Vijayalakshmi ◽  
Zhiheng Jiang ◽  
Xiong Wang

This paper presents the formulation of Lagrangian function for Lorenz, Modified Lorenz and Chen systems using Lagrangian functions depending on fractional derivatives of differentiable functions, and the estimation of the conserved quantity associated with the respective systems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Max Kistler

Abstract Most philosophers of physics are eliminativists about causation. Following Bertrand Russell’s lead, they think that causation is a folk concept that cannot be rationally reconstructed within a worldview informed by contemporary physics. Against this thesis, I argue that physics contributes to shaping the concept of causation, in two ways. (1) Special Relativity is a physical theory that expresses causal constraints. (2) The physical concept of a conserved quantity can be used in the functional reduction of the notion of causation. The empirical part of this reduction makes the hypothesis that the transference of an amount of a conserved quantity is a necessary and sufficient condition for causation. This hypothesis is defended against several objections from physics: that amounts of energy do not possess the appropriate identity conditions required for being able to be transmitted, that there is no universal principle of the conservation of energy in General Relativity, and that there are at least two types of physical systems in which causation does not involve any transference: entangled systems in quantum mechanics and the Aharonov–Bohm effect. In order to show that physics provides means to elaborate the concept of causation it is important to avoid certain misunderstandings. In particular, the claim that there is causation in a physical world does not mean that causation is an additional ingredient of the “furniture” of the world, over and above the ingredients identified by physics.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2195
Author(s):  
Zhenyu Wang ◽  
Qiang Ma ◽  
Xiaohua Ding

Explicit numerical methods have a great advantage in computational cost, but they usually fail to preserve the conserved quantity of original stochastic differential equations (SDEs). In order to overcome this problem, two improved versions of explicit stochastic Runge–Kutta methods are given such that the improved methods can preserve conserved quantity of the original SDEs in Stratonovich sense. In addition, in order to deal with SDEs with multiple conserved quantities, a strategy is represented so that the improved methods can preserve multiple conserved quantities. The mean-square convergence and ability to preserve conserved quantity of the proposed methods are proved. Numerical experiments are implemented to support the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document