scholarly journals Correlation of crack growth rate and stress ratio for fatigue damage containing very high cycle fatigue regime

2012 ◽  
Vol 2 (3) ◽  
pp. 031004 ◽  
Author(s):  
Chengqi Sun ◽  
Youshi Hong
2016 ◽  
Vol 258 ◽  
pp. 255-258
Author(s):  
Ulrich Krupp ◽  
Marcus Söker ◽  
Tina Waurischk ◽  
Alexander Giertler ◽  
Benjamin Dönges ◽  
...  

As being used for structural applications, where a high corrosion resistance is required, the fatigue behavior of duplex stainless steels (DSS) is governed by the partition of cyclic plasticity to the two phases, ferrite and austenite, respectively. Under very high cycle fatigue (VHCF) loading conditions, the heterogeneous distribution of crystallographic misorientations between neighboring grains and phases yields to a pronounced scatter in fatigue life, ranging from 1 million to 1 billion cycles for nearly the same stress amplitude. In addition, the relevant damage mechanisms depend strongly on the atmosphere. Stress corrosion cracking in NaCl-containing atmosphere causes a pronounced decrease in the VHCF life. By means of ultrasonic fatigue testing at 20kHz in combination with high resolution scanning electron microscopy, electron back-scattered diffraction (EBSD), focused ion beam milling (FIB) and synchrotron tomography, the microstructure heterogeneities were quantified and correlated with local fatigue damage. It has been shown that the fatigue process is rather complex, involving redistribution of residual stresses and three-dimensional barrier effects of the various interfaces. The application of a 2D/3D finite element model allows a qualitative prediction of the fatigue-damage process in DSS that is controlled by stochastic local microstructure arrangements.


2020 ◽  
Vol 10 (23) ◽  
pp. 8475
Author(s):  
Jan Patrick Sippel ◽  
Eberhard Kerscher

Understanding the mechanisms leading to very high cycle fatigue is necessary to make predictions about the behavior under various conditions and to ensure safe design over the whole lifetime of high-performance components. It is further vital for the development of possible measures to increase the very high cycle fatigue strength. This review therefore intends to give an overview of the properties of the fine granular area that have been observed so far. Furthermore, the existing models to describe the early crack initiation and crack growth within the very high cycle fatigue regime are outlined and the models are evaluated on the basis of the identified fine granular area properties. The aim is to provide an overview of the models that can already be considered refuted and to specify the respective open questions regarding the other individual models.


2018 ◽  
Vol 4 (0) ◽  
pp. 18-00134-18-00134
Author(s):  
Takeshi OGAWA ◽  
Shota HASUNUMA ◽  
Yosuke INATOMI ◽  
Natsumi YASUKOCHI ◽  
Shohei SHIGETA

Sign in / Sign up

Export Citation Format

Share Document