Experimental determination of acoustic properties of brick block by reverberation chambers method

2020 ◽  
Author(s):  
Miloš Jerman ◽  
Petr Konrád ◽  
Lukáš Fiala ◽  
Robert Černý
2019 ◽  
Vol 126 (7) ◽  
pp. 075106 ◽  
Author(s):  
Nicolas Kurz ◽  
Anli Ding ◽  
Daniel F. Urban ◽  
Yuan Lu ◽  
Lutz Kirste ◽  
...  

Author(s):  
Lukáš Fiala ◽  
Petr Konrád ◽  
Robert Černý

In Central Europe, brick blocks with incorporated system of voids ensuring good thermal properties are widely used in the building industry. In the present, increasingly higher acoustic load gains on importance especially in the surroundings of places with high traffic load, places close to the airports or in urban areas. This fact should be taken into consideration in the design of constructions in order to ensure their good acoustic performance. The very first step of such design lies in the experimental determination of acoustic properties of the reference construction elements which are, if necessary, subsequently optimized by adjustment of the voids volume and geometry or filling of the voids by various bulk fillers ensuring a higher level of scattering of the propagating acoustic signal. In this paper, steel prism and brick block were subjected to measurements by accelerometers in the frequency range 1 – 10 kHz in order to compare acoustic behavior of materials with a significantly different structure. Finally, frequency-dependent displacements in accelerometers position,


2019 ◽  
Vol 282 ◽  
pp. 02061
Author(s):  
Lukáš Fiala ◽  
Petr Konrád ◽  
Robert Černý

Experimental determination of acoustic properties of building materials is an important task gaining higher importance due to demand for materials suitable for constructions located in places with high level of noise, typically in urban areas and places close to the areas with heavy traffic. In this paper, two types of experimental setups are arranged, and tested on steel prism and brick block. Transmitter-receiver method is based on exciting the tested material by one period of harmonic signal and analysis of response on two accelerometers placed on the excited and the opposite side of the sample. The second method is based on measurement of the sound pressure level in a system of two reverberation chambers by precise microphones and vibration analyzer. Transmitter-receiver measurement conducted on steel sample revealed the fact that further adjustment of the measurement setup and successive analysis is necessary. Measurement in reverberation chambers is convenient for comparison of acoustic insulation ability of heterogeneous building materials.


1999 ◽  
Vol 96 (6) ◽  
pp. 1111-1116 ◽  
Author(s):  
E. Falcon ◽  
S. Fauve ◽  
C. Laroche

Sign in / Sign up

Export Citation Format

Share Document