surface acoustic wave
Recently Published Documents


TOTAL DOCUMENTS

4947
(FIVE YEARS 593)

H-INDEX

78
(FIVE YEARS 10)

2022 ◽  
Vol 26 (2) ◽  
Author(s):  
Citsabehsan Devendran ◽  
David J. Collins ◽  
Adrian Neild

AbstractSurface acoustic wave (SAW) micromanipulation offers modularity, easy integration into microfluidic devices and a high degree of flexibility. A major challenge for acoustic manipulation, however, is the existence of a lower limit on the minimum particle size that can be manipulated. As particle size reduces, the drag force resulting from acoustic streaming dominates over acoustic radiation forces; reducing this threshold is key to manipulating smaller specimens. To address this, we investigate a novel excitation configuration based on diffractive-acoustic SAW (DASAW) actuation and demonstrate a reduction in the critical minimum particle size which can be manipulated. DASAW exploits the inherent diffractive effects arising from a limited transducer area in a microchannel, requiring only a travelling SAW (TSAW) to generate time-averaged pressure gradients. We show that these acoustic fields focus particles at the channel walls, and further compare this excitation mode with more typical standing SAW (SSAW) actuation. Compared to SSAW, DASAW reduces acoustic streaming effects whilst generating a comparable pressure field. The result of these factors is a critical particle size with DASAW (1 $$\upmu$$ μ m) that is significantly smaller than that for SSAW actuation (1.85 $$\upmu$$ μ m), for polystyrene particles and a given $$\lambda _{\text {SAW}}$$ λ SAW = 200 $$\upmu$$ μ m. We further find that streaming magnitude can be tuned in a DASAW system by changing the channel height, noting optimum channel heights for particle collection as a function of the fluid wavelength at which streaming velocities are minimised in both DASAW and SSAW devices.


Author(s):  
Takamitsu Iwaya ◽  
Shingo Akao ◽  
Kazushi Yamanaka ◽  
Tatsuhiro Okano ◽  
Nobuo Takeda ◽  
...  

Abstract For on-site analysis of surface materials on the moon, planets, and small bodies and for the monitoring of air quality in crewed spacecraft, we have developed a portable gas chromatograph (GC) equipped with a ball surface acoustic wave (SAW) sensor. In this study, we fabricated a 10 cm cube GC that implements the forward flush method using two metal micro-electro-mechanical-system (MEMS) columns coated with different stationary phases in microchannels fabricated by wet etching and diffusion bonding of stainless-steel plates. Using this GC, we succeeded in analyzing 10 kinds of gas within 10 min. In addition, for the application of the ball SAW GC on the ground, we also developed a palm-sized GC with a single metal capillary column and used it in the analysis of the headspace gas of sake. We showed that the ratio of peak areas differed among odorants depending on the brand and brewing process of sake.


Author(s):  
Takumi Tominaga ◽  
Shinji Takayanagi ◽  
Takahiko Yanagitani

Abstract ScAlN films are currently being investigated for their potential use in surface acoustic wave (SAW) devices for next-generation mobile networks because of their high piezoelectricity. This paper describes the numerical simulation of SAW propagation in c-axis-tilted ScAlN films on silicon substrates and a fabrication technique for preparing c-axis-tilted ScAlN films on silicon substrates. The electromechanical coupling coefficient K 2 of SAW propagating in the ScAlN film/silicon substrate increased due to the c-axis tilt angle. The maximum K 2 value is approximately 3.90%. This value is 2.6 times the maximum K 2 value of the c-axis-oriented ScAlN film/silicon substrate structure. The c-axis-tilted ScAlN films with an Sc concentration of 40% were prepared on a silicon substrate via RF magnetron sputtering based on the self-shadowing effect, and the maximum c-axis tilt angle was 57.4°. These results indicate that this device structure has potential for SAW device applications with well-established micromachining technology derived from silicon substrates.


Author(s):  
S. Yu. Shevchenko ◽  
D. A. Mikhailenko ◽  
B. Nyamweru

Introduction. Previous works considered the frequency characteristics and methods for fixing sensitive elements in the form of a wave ring resonator on surface acoustic waves in a housing made of various materials, as well as the influence of external factors on sensitive elements. It was found that the passband in such a case is sufficiently wide, which can affect adversely signal detection when measuring acceleration using the sensitive element under development. Therefore, it has become relevant to reduce the sensitive element’s bandwidth by changing the design of the interdigitated transducer (IDT).Aim. To demonstrate an optimal topology for an IDT with a low bandwidth, leading to improved signal detection when acceleration affects the sensitive element.Materials and methods. The finite element method and mathematical processing in AutoCAD and in COMSOL Multiphysics.Results. Nine topologies of IDT are proposed. All these types were investigated using the COMSOL Multiphysics software on lithium niobate substrates, which material acts as a sensitive element. The frequency characteristics are presented. The data obtained allowed an optimal design of the ring resonator to be proposed: an IDT with rectangular pins without selective withdrawal.Conclusion. Self-generation in a ring resonator can be performed by withdrawing no more than one pair of IDTs for 10 or more periods. In this case, the withdrawal of IDTs should be uniform. With an increase in the number of IDT withdrawals, the geometry of the ring resonator is violated, and the wave leaves the structure. The presence of a shared bus keeps the surface acoustic wave inside the IDT structure, and the narrowing of the periods towards the inner part of the structure makes it possible to improve the frequency characteristics of the ring resonator on surface acoustic waves.


Author(s):  
Walter Water ◽  
Cheng-Je Li ◽  
Liang-Wen Ji

A surface acoustic wave ultraviolet photodetector was fabricated on a ZnO thin film with pure and Ni-doped ZnO nanorods deposited on a Si substrate. Piezoelectric ZnO thin films were grown on Si through radio-frequency magnetron sputtering, and ZnO nanorods were synthesized on ZnO thin films by using the hydrothermal method. The crystalline structure, surface morphology, and luminescent characteristics of ZnO films and nanorods were examined using X-ray diffraction and photoluminescence spectrometers and scanning electron microscope. The performance of the surface acoustic wave photodetector was evaluated using the variations in surface capacitance, insertion loss, and phase shift. ZnO nanorods became shorter and thicker with an increase in the concentration of Ni doping; however, the variations in surface capacitance of Ni-doped ZnO nanorods were greater than those of pure ZnO nanorods obtained under ultraviolet irradiation. Devices with Ni-doped ZnO nanorods exhibited larger shifts in insertion loss and phase than those with pure ZnO nanorods did.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1576
Author(s):  
Rishikesh Srinivasaraghavan Govindarajan ◽  
Eduardo Rojas-Nastrucci ◽  
Daewon Kim

A surface acoustic wave (SAW), device composed of polymer and ceramic fillers, exhibiting high piezoelectricity and flexibility, has a wide range of sensing applications in the aerospace field. The demand for flexible SAW sensors has been gradually increasing due to their small size, wireless capability, low fabrication cost, and fast response time. This paper discusses the structural, thermal, and electrical properties of the developed sensor, based on different micro- and nano-fillers, such as lead zirconate titanate (PZT), calcium copper titanate (CCTO), and carbon nanotubes (CNTs), along with polyvinylidene fluoride (PVDF) as a polymer matrix. The piezocomposite substrate of the SAW sensor is fabricated using a hot press, while interdigital transducers (IDTs) are deposited through 3D printing. The piezoelectric properties are also enhanced using a non-contact corona poling technique under a high electric field to align the dipoles. Results show that the developed passive strain sensor can measure mechanical strains by examining the frequency shifts of the detected wave signals.


Author(s):  
Li Zhang ◽  
Xia Xiao ◽  
Haiyang Qi ◽  
Yiting Huang ◽  
Huiquan Qin

Abstract The laser-generated surface acoustic wave (SAW) technique is a promising method to measure the mechanical properties of thin films quickly and nondestructively. Residual stress is inevitable during the processing and manufacturing of integrated circuits, which will have a major impact on the physical and mechanical properties of the thin film materials and cause deterioration to the structural strength. In this study, the SAW technique based method is proposed for quantitative and nondestructive measuring the residual stress in the nanostructured films. The method is verified by the experiment measuring the SiO2 films in the thickness range of 100 to 2000 nm. The experimental procedures, including signal excitation, reception and processing, are described in detail. By matching the SAW experimental dispersion curve with the calculated theoretical dispersion curve containing the residual stress, the residual stress of the SiO2 films along [110] and [100] crystallographic orientation of the Si wafer is successfully quantified. The determination results are ranged from -65.5 to 421.1 MPa and the stress value increases as the film thickness decreases, revealing the residual stress of the SiO2 film is compressive. Meanwhile, the conventional substrate curvature method as a comparison is used to verify the correctness and feasibility of the proposed SAW method for the residual stress determination.


Author(s):  
Keyuan Gong ◽  
Zhaohui Wu ◽  
Yu-Po Wong ◽  
Yawei Li ◽  
Qi Liang ◽  
...  

Abstract This paper discusses influence of displacement and patterning of phase shifters for piston mode operation of the temperature compensated (TC) surface acoustic wave (SAW) resonator on SiO2/LiNbO3 structure. As the phase shifters, Cu metals placed on the top surface of SiO2 are considered. First, the conventional Cu stripes are chosen, and their displacement are considered from IDT aperture edges. It is shown that achievable transverse mode suppression is almost identical when the stripe shape is adjusted for each case. Next, Cu dots are considered as patterned phase shifters. It is shown comparable transverse mode suppression is possible also for this case. However, relatively strong SAW lateral leakage occurs when they are placed above IDT fingers. These results indicate that location and pattern can be added as design parameters for the phase shifters on SiO2. It is favorable for further enhancement of total device performances.


Sign in / Sign up

Export Citation Format

Share Document