granular gases
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 31)

H-INDEX

32
(FIVE YEARS 3)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 131
Author(s):  
Natalia Ruiz-Pino ◽  
Antonio Prados

We present a detailed analytical investigation of the optimal control of uniformly heated granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed to be bounded between two values that are close, which limits the possible values of the granular temperature to a correspondingly small interval. Specifically, we are interested in minimising the connection time between the non-equilibrium steady states (NESSs) for two different values of the granular temperature by controlling the time dependence of the driving intensity. The closeness of the initial and target NESSs make it possible to linearise the evolution equations and rigorously—from a mathematical point of view—prove that the optimal controls are of bang-bang type, with only one switching in the first Sonine approximation. We also look into the dependence of the optimal connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear regime are investigated.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Andrew Hong ◽  
Aaron Morris
Keyword(s):  

2021 ◽  
Vol 90 (6) ◽  
pp. 064801
Author(s):  
Haruto Ishikawa ◽  
Satoshi Takada
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry Puzyrev ◽  
David Fischer ◽  
Kirsten Harth ◽  
Torsten Trittel ◽  
Raúl Cruz Hidalgo ◽  
...  

AbstractGranular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.


2021 ◽  
Vol 249 ◽  
pp. 04005
Author(s):  
Vicente Garzó ◽  
Ricardo Brito ◽  
Rodrigo Soto

A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system after a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.


2021 ◽  
Vol 249 ◽  
pp. 04004
Author(s):  
Dmitry Puzyrev ◽  
Raúl Cruz Hidalgo ◽  
David Fischer ◽  
Kirsten Harth ◽  
Torsten Trittel ◽  
...  

Granular gases are interesting multiparticle systems which, irrespective of the apparent simplicity of particle interactions, exhibit a rich scenario of so far only little understood features. We have numerically investigated a dense granular gas composed of frictional spherocylinders which are excited mechanically by lateral vibrating container walls. This study was stimulated by experiments in microgravity on parabolic flights. The formation of spatial inhomogeneities (clusters) was observed in a region near the corners of the container, about halfway from the excitation plates. The particles in the clusters show a tendency to align parallel to the container walls, seemingly increasing the stabilizing effect of friction. The simulation results provide hints that the phase difference of the vibrations of the two excitation walls might affect the cluster dynamics.


Sign in / Sign up

Export Citation Format

Share Document