scholarly journals Adiabatic theory of SET and RESET transitions

2021 ◽  
Vol 129 (11) ◽  
pp. 114501
Author(s):  
V. G. Karpov
Keyword(s):  
1989 ◽  
Vol 50 (10) ◽  
pp. 1195-1208 ◽  
Author(s):  
A. Spielfiedel ◽  
E. Roueff ◽  
N. Feautrier

1988 ◽  
Vol 49 (11) ◽  
pp. 1911-1923 ◽  
Author(s):  
N. Feautrier ◽  
E. Roueff ◽  
A. Spielfiedel

1964 ◽  
Vol 135 (3A) ◽  
pp. A638-A639 ◽  
Author(s):  
T. R. Koehler ◽  
R. K. Nesbet

2013 ◽  
Vol 20 (1) ◽  
pp. 163-178 ◽  
Author(s):  
A. V. Artemyev ◽  
A. I. Neishtadt ◽  
L. M. Zelenyi

Abstract. We present a theory of trapped ion motion in the magnetotail current sheet with a constant dawn–dusk component of the magnetic field. Particle trajectories are described analytically using the quasi-adiabatic invariant corresponding to averaging of fast oscillations around the tangential component of the magnetic field. We consider particle dynamics in the quasi-adiabatic approximation and demonstrate that the principal role is played by large (so called geometrical) jumps of the quasi-adiabatic invariant. These jumps appear due to the current sheet asymmetry related to the presence of the dawn–dusk magnetic field. The analytical description is compared with results of numerical integration. We show that there are four possible regimes of particle motion. Each regime is characterized by certain ranges of values of the dawn–dusk magnetic field and particle energy. We find the critical value of the dawn–dusk magnetic field, where jumps of the quasi-adiabatic invariant vanish.


2015 ◽  
Vol 68 (8) ◽  
pp. 1202 ◽  
Author(s):  
Jeffrey R. Reimers

The reaction coordinate is a well known quantity used to define the motions critical to chemical reactions, but many other motions always accompany it. These other motions are typically ignored but this is not always possible. Sometimes it is not even clear as to which motions comprise the reaction coordinate: spectral measurements that one may assume are dominated by the reaction coordinate could instead be dominated by the accompanying modes. Examples of different scenarios are considered. The assignment of the visible absorption spectrum of chlorophyll-a was debated for 50 years, with profound consequences for the understanding of how light energy is transported and harvested in natural and artificial solar-energy devices. We recently introduced a new, comprehensive, assignment, the centrepiece of which was determination of the reaction coordinate for an unrecognized photochemical process. The notion that spectroscopy and reactivity are so closely connected comes directly from Hush’s adiabatic theory of electron-transfer reactions. Its basic ideas are reviewed, similarities to traditional chemical theories drawn, key analytical results described, and the importance of the accompanying modes stressed. Also highlighted are recent advances that allow this theory to be applied to general transformations including isomerization processes, hybridization, aromaticity, hydrogen bonding, and understanding why the properties of first-row molecules such as NH3 (bond angle 108°) are so different to those of PH3–BiH3 (bond angles 90–93°). Historically, the question of what is the reaction coordinate and what is just an accompanying motion has not commonly been at the forefront of attention. In our new approach in which all chemical processes are described using the same core theory, this question becomes thrust forward as always being the most important qualitative feature to determine.


2013 ◽  
Vol 20 (5) ◽  
pp. 899-919 ◽  
Author(s):  
A. V. Artemyev ◽  
A. I. Neishtadt ◽  
L. M. Zelenyi

Abstract. We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013) we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.


Sign in / Sign up

Export Citation Format

Share Document