scholarly journals Quasi-indirect measurement of electrocaloric temperature change in PbSc0.5Ta0.5O3 via comparison of adiabatic and isothermal electrical polarization data

APL Materials ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 010701 ◽  
Author(s):  
S. Crossley ◽  
R. W. Whatmore ◽  
N. D. Mathur ◽  
X. Moya
Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2877 ◽  
Author(s):  
Lingfeng Xu ◽  
Chengyuan Qian ◽  
Yongchang Ai ◽  
Tong Su ◽  
Xueling Hou

In this paper, the magnetocaloric properties of Gd1−xTbx alloys were studied and the optimum composition was determined to be Gd0.73Tb0.27. On the basis of Gd0.73Tb0.27, the influence of different Fe-doping content was discussed and the effect of heat treatment was also investigated. The adiabatic temperature change (ΔTad) obtained by the direct measurement method (under a low magnetic field of 1.2 T) and specific heat capacity calculation method (indirect measurement) was used to characterize the magnetocaloric properties of Gd1−xTbx (x = 0~0.4) and (Gd0.73Tb0.27)1−yFey (y = 0~0.15), and the isothermal magnetic entropy (ΔSM) was also used as a reference parameter for evaluating the magnetocaloric properties of samples together with ΔTad. In Gd1−xTbx alloys, the Curie temperature (Tc) decreased from 293 K (x = 0) to 257 K (x = 0.4) with increasing Tb content, and the Gd0.73Tb0.27 alloy obtained the best adiabatic temperature change, which was ~3.5 K in a magnetic field up to 1.2 T (Tc = 276 K). When the doping content of Fe increased from y = 0 to y = 0.15, the Tc of (Gd0.73Tb0.27)1−yFey (y = 0~0.15) alloys increased significantly from 276 K (y = 0) to 281 K (y = 0.15), and a good magnetocaloric effect was maintained. The annealing of alloys (Gd0.73Tb0.27)1−yFey (y = 0~0.15) at 1073 K for 10 h resulted in an average increase of 0.3 K in the maximum adiabatic temperature change and a slight increase in Tc. This study is of great significance for the study of magnetic refrigeration materials with adjustable Curie temperature in a low magnetic field.


1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 261-269
Author(s):  
Wei Ren ◽  
Brennan Dubord ◽  
Jason Johnson ◽  
Bruce Allison

Tight control of raw green liquor total titratable alkali (TTA) may be considered an important first step towards improving the overall economic performance of the causticizing process. Dissolving tank control is made difficult by the fact that the unknown smelt flow is highly variable and subject to runoff. High TTA variability negatively impacts operational costs through increased scaling in the dissolver and transfer lines, increased deadload in the liquor cycle, under- and over-liming, increased energy consumption, and increased maintenance. Current practice is to use feedback control to regulate the TTA to a target value through manipulation of weak wash flow while simultaneously keeping dissolver density within acceptable limits. Unfortunately, the amount of variability reduction that can be achieved by feedback control alone is fundamentally limited by the process dynamics. One way to improve upon the situation would be to measure the smelt flow and use it as a feedforward control variable. Direct measurement of smelt flow is not yet possible. The use of an indirect measurement, the dissolver vent stack temperature, is investigated in this paper as a surrogate feedforward variable for dissolving tank TTA control. Mill trials indicate that significant variability reduction in the raw green liquor TTA is possible and that the control improvements carry through to the downstream processes.


2019 ◽  
Vol 139 (9) ◽  
pp. 584-591
Author(s):  
Takumi Takashima ◽  
Kazuaki Ikeda

Sign in / Sign up

Export Citation Format

Share Document