scholarly journals Large amplitude slow ion-acoustic solitons, supersolitons, and double layers in a warm negative ion plasma with superthermal electrons

AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025325
Author(s):  
X. Mushinzimana ◽  
F. Nsengiyumva ◽  
L. L. Yadav
2018 ◽  
Vol 73 (10) ◽  
pp. 893-904 ◽  
Author(s):  
E.F. El-Shamy ◽  
N.A. El-Bedwehy ◽  
M. Shokry ◽  
S.K. El-Labany

AbstractThe face-to-face collision of ion acoustic solitons (IASs) in superthermal plasmas composed of positive and negative ion fluids and superthermal electrons is investigated for different geometrical configurations. For the generic case, the extended Poincaré-Lighthill-Kuo (EPLK) analysis is employed to obtain the extended Korteweg-de Vries (EKdV) equations and phase shift equations. The non-linear propagation and the face-to-face collision of bright and dark IASs are studied. In addition, when the concentration of ion reaches the critical value, the EPLK method is applied to obtain the modified Korteweg-de Vries (mKdV) equations and the phase shift relations, which govern the excitation and the face-to-face collision of bright and dark IASs. Appropriately, the effects of several parameters such as the electron concentration, the superthermality of electrons and the diversity in the system’s geometry under consideration on the trajectories of IASs after the collision are discussed. Numerical calculations lead to some highlights on the properties of bright and dark IASs (e.g. in laboratory plasmas such as laser–matter/plasma interaction experiments and in astrophysical environments such as lower part of magnetosphere).


1990 ◽  
Vol 68 (6) ◽  
pp. 474-478 ◽  
Author(s):  
S. L. Jain ◽  
R. S. Tiwari ◽  
S. R. Sharma

We have investigated the effect of second-ion species on the characteristics of a large-amplitude ion-acoustic double layers (IADL) in a collisionless, unmagnetized plasma consisting of hot and cold Maxwellian populations of electrons and two cold-ion species with different masses, concentrations, and charge states. After deriving the criteria for the existence of large-amplitude IADL, we find that the presence of a positive-ion impurity does not modify considerably the characteristics of large-amplitude IADL. However, the presence of a negative-ion impurity changes significantly the characteristics of large-amplitude IADL. We have also presented an analytic discussion of small-amplitude IADL using a reductive perturbation method.


2014 ◽  
Vol 21 (6) ◽  
pp. 062311 ◽  
Author(s):  
G. S. Lakhina ◽  
S. V. Singh ◽  
A. P. Kakad

Sign in / Sign up

Export Citation Format

Share Document