scholarly journals Normal modes with boundary dynamics in geophysical fluids

2021 ◽  
Vol 62 (9) ◽  
pp. 093102
Author(s):  
Houssam Yassin
2007 ◽  
Vol 588 ◽  
pp. 463-473 ◽  
Author(s):  
GEORGI. G. SUTYRIN

The normal modes of a horizontally uniform, vertically sheared flow over a sloping bottom are considered in two active layers underneath a deep motionless third layer. The variations of the layer thickness are assumed to be small to analyse the sixth-order eigenvalue problem for finite-Froude-number typical for oceanic currents. The dispersion curves for the Rossby waves and the Poincaré modes of inertia–gravity waves (IGW) are investigated to identify the different types of instabilities that occur if there is a pair of wave components which have almost the same Doppler-shifted frequency related to crossover of the branches when the Froude number increases. Simple criteria for ageostrophic instabilities due to a resonance between the IGW and the Rossby wave because of the thickness gradient in either the lower or middle layer, are derived. They exactly correspond to violation of sufficient Ripa's conditions for the flow stability. In both cases the growth rate and the interval of unstable wavenumbers are shown to be proportional to the square root of the corresponding gradient of the layer thickness. These types of ageostrophic instability can coexist (and with Kelvin–Helmholtz instability). However, their role in generating unbalanced motions and mixing processes in geophysical fluids appears limited due to small growth rates and narrow intervals of the unstable wavenumbers in comparison to Kelvin–Helmholtz instability.


1984 ◽  
Vol 9 (2) ◽  
pp. 307-346
Author(s):  
D.G. Andrews
Keyword(s):  

2000 ◽  
Vol 42 ◽  
pp. 1482
Author(s):  
Mozheng Wei ◽  
Jorgen S. Frederiksen ◽  
Steve Kepert

Author(s):  
Michele Maggiore

A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).


Author(s):  
John H. D. Eland ◽  
Raimund Feifel

Double ionisation of the triatomic molecules presented in this chapter shows an added degree of complexity. Besides potentially having many more electrons, they have three vibrational degrees of freedom (three normal modes) instead of the single one in a diatomic molecule. For asymmetric and bent triatomic molecules multiple modes can be excited, so the spectral bands may be congested in all forms of electronic spectra, including double ionisation. Double photoionisation spectra of H2O, H2S, HCN, CO2, N2O, OCS, CS2, BrCN, ICN, HgCl2, NO2, and SO2 are presented with analysis to identify the electronic states of the doubly charged ions. The order of the molecules in this chapter is set first by the number of valence electrons, then by the molecular weight.


1999 ◽  
Vol 59 (2) ◽  
pp. 1656-1668 ◽  
Author(s):  
A. L. Virovlyansky ◽  
G. M. Zaslavsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document