Analysis of the relative stability of lithium halide crystal structures: Density functional theory and classical models

2021 ◽  
Vol 154 (18) ◽  
pp. 184507
Author(s):  
H. O. Scheiber ◽  
G. N. Patey
Author(s):  
Jacco van de Streek ◽  
Marcus A. Neumann

In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.


RSC Advances ◽  
2020 ◽  
Vol 10 (61) ◽  
pp. 37142-37152
Author(s):  
Yi X. Wang ◽  
Ying Y. Liu ◽  
Zheng X. Yan ◽  
W. Liu ◽  
Jian B. Gu

The phase stabilities, elastic anisotropies, and thermal conductivities of ReB2 diborides under ambient conditions have been investigated by using density functional theory calculations.


2008 ◽  
Vol 07 (04) ◽  
pp. 505-515
Author(s):  
LIQIN XUE ◽  
GUOCHEN JIA ◽  
ZHENYANG LIN

The relative stability of the trans and cis isomers in the square planar palladium(II) complexes Pd ( I )( PPh 3)(η3- XCHC ( Ph ) CHR ) ( X = H , Me , CMe 3, CO 2 Me , P ( O )( OMe )2, and SO 2 H ; R = H , Me ) was investigated with the aid of the B3LYP density functional theory calculations. We examined how the substituents X, with different electronic properties, of the η3-allyl ligands affect the relative stability of the trans and cis isomers. Through the investigation, we were able to explain the trans/cis relative stability derived from the experimentally measured trans/cis isomer ratios in the palladium(II) complexes.


2010 ◽  
Vol 66 (5) ◽  
pp. 544-558 ◽  
Author(s):  
Jacco van de Streek ◽  
Marcus A. Neumann

This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.


RSC Advances ◽  
2015 ◽  
Vol 5 (85) ◽  
pp. 69680-69689 ◽  
Author(s):  
Stephan Schönecker ◽  
Xiaoqing Li ◽  
Klaus Koepernik ◽  
Börje Johansson ◽  
Levente Vitos ◽  
...  

DFT calculations for 24 transition metals predict eleven metastable allotropes in fcc or bct phase and support a relation between nonequilibrium crystal structures observable in nanostructures and corresponding metastable isostructural bulk phases.


2021 ◽  
Author(s):  
Thiti Bovornratanaraks ◽  
Prutthipong Tsuppayakorn-aek

The relation between thermodynamically stable and electronic structure preparation is one of the fundamental questions in physics, geophysics and chemistry. Since the discovery of the novel structure, this has remained as one of the main questions regarding the very foundation of elemental metals. Needless to say this has also bearings on extreme conditions physics, where again the relation between structure and performance is of direct interest. Crystal structures have been mainly at ambient conditions, i.e. at room temperature and ambient pressure. Nevertheless it was realized early that there is also a fundamental relation between volume and structure, and that this dependence could be most fruitfully studied by means of high pressure experimental techniques. From a theoretical point of view this is an ideal type of experiment, since only the volume is changed, which is a very clean variation of the external conditions. Therefore, at least in principle, the theoretical approach remains the same irrespective of the high pressure loading of the experimental sample. Theoretical modeling is needed to explain the measured data on the pressure volume relationships in crystal structures. Among those physical properties manifested itself under high pressure, superconductivity has emerged as a prominent property affected by pressure. Several candidate structure of materials are explored by ab initio random structure searching (AIRSS). This has been carried out in combination with density functional theory (DFT). The remarkable solution of AIRSS is possible to expect a superconductivity under high pressure. This chapter provide a systematically review of the structural prediction and superconductivity in elemental metals, i.e. lithium, strontium, scandium, arsenic.


2021 ◽  
Vol 68 (3) ◽  
pp. 718-727
Author(s):  
Ibrahim Bouabdallah ◽  
Tarik Harit ◽  
Mahmoud Rahal ◽  
Fouad Malek ◽  
Monique Tillard ◽  
...  

The single crystal X-ray structure of new 1,1’-bis(2-nitrophenyl)-5,5’-diisopropyl-3,3’-bipyrazole, 1, is triclinic P I–, a = 7.7113(8), b = 12.3926(14), c = 12.9886(12) Å, α = 92.008(8), β = 102.251(8), γ = 99.655(9)°. The structural arrangement is compared to that of 5,5’-diisopropyl-3,3’-bipyrazole, 5, whose single crystal structure is found tetragonal I41/a, a = b = 11.684(1), c = 19.158(1) Å. The comparison is also extended to the structures previously determined for 1,1’-bis(2-nitrophenyl)-5,5’-propyl-3,3’-bipyrazole, 2, 1,1’-bis(4-nitrophenyl)-5,5’-diisopropyl-3,3’-bipyrazole, 3, and 1,1’-bis(benzyl)-5,5’-diisopropyl-3,3’-bipyrazole, 4. Density Functional Theory (DFT) calculations are used to investigate the molecular geometries and to determine the global reactivity parameters. The geometry of isolated molecules and the molecular arrangements in the solid state are analyzed according to the nature of the groups connected to the bipyrazole core.


Sign in / Sign up

Export Citation Format

Share Document