Waste loading capability of zirconolite — A review

2021 ◽  
Author(s):  
Rajveer Kaur ◽  
M. Gupta ◽  
P. K. Kulriya ◽  
S. S. Ghumman
Keyword(s):  
Author(s):  
Devon L. McClane ◽  
Jake W. Amoroso ◽  
Madison C. Hsieh ◽  
Kevin M. Fox ◽  
Albert A. Kruger

1996 ◽  
Vol 465 ◽  
Author(s):  
J. P. Freidberg ◽  
A. J. Shajii ◽  
K. W. Wenzel ◽  
J. R. Lierzer

ABSTRACTThis paper describes a new concept for a high-temperature, electrodeless melter for vitrifying radioactive wastes. Based on the principles of induction heating, it circumvents a number of difficulties associated with existing technology. The melter can operate at higher temperatures (1500–2000°C vs 1150°C), allowing for a higher quality, more durable glass which reduces the long-term leaching rate. Higher processing temperatures also enable conversion from borosilicate to high-silica glass which can accommodate 2 to 3 times as much radioactive waste, potentially halving the ultimate required long-term disposal space. Finally, with high temperatures, conversion of nuclear waste into ceramics can also be considered. This too leads to higher waste loading and the reduction of repository space. The melter is toroidal, linked by an iron core transformer that allows efficient electrical operation even at 60 Hz. One-dimensional electrical and thermal analyses are presented.


2005 ◽  
Vol 475-479 ◽  
pp. 1627-1630 ◽  
Author(s):  
Rui Zhu Zhang ◽  
Zhi Meng Guo ◽  
Cheng Chang Jia ◽  
Guangfeng Lu

This paper researched the fabrication of perovskite synrock by self-propagating high temperature synthesis (SHS) and the characterization of the products. This synthesis process is simpler, the fabricated synrock can immobilize waste loading up to 35wt% SrO with satisfied physical properties (density>4.2g•cm-3, open porosity<0.2%, Leach rate<1.0 g•m-2•d-1). The structure analyses by XRD and SEM/EDS show that the major phase is perovskite which well agrees with the design. It proves that SHS offer a suitable Sr-waste synroc which is favorable for geological disposal.


2018 ◽  
Vol 82 (4) ◽  
pp. 939-942 ◽  
Author(s):  
Claire. L. Corkhill ◽  
Adam J. Fisher ◽  
Denis M. Strachan ◽  
Russell J. Hand ◽  
Neil C. Hyatt

AbstractWe revise the data fitting in our original paper [The dissolution rates of simulated UK Magnox - ThORP blend nuclear waste glass as a function of pH, temperature and waste loading, Miner. Mag.79 (2015) 1529–1542]. The intrinsic rate constant data were calculated incorrectly, the corrected data are presented herein. To support the corrected analysis we have also taken the opportunity to report some additional 90°C data. The conclusions of the original paper remain sound.


2006 ◽  
Vol 932 ◽  
Author(s):  
Paul A. Bingham ◽  
Russell J. Hand ◽  
Charlie R. Scales

ABSTRACTVitrification is a potential route for the immobilisation of Plutonium Contaminated Material (PCM). This is an Intermediate Level Waste (ILW) arising from operations in which there is contact with Pu isotopes. PCM consists of low levels of Pu combined with metals, masonry, glass, ceramics, polymers and other carbonaceous materials. Simulated PCM containing CeO2 as a PuO2 surrogate was mixed with a phosphate precursor and vitrified. Pre-oxidation of PCM simulant prior to vitrification minimised the violence of batch reactions. No pre-oxidation produced inhomogeneous slag-like materials with high residual metals and particulates. Pre-oxidation at 600°C in air and at 1200°C in an O2-rich atmosphere produced more favourable results, with increasingly vitreous products resulting from more oxidised PCM simulant. The most oxidised PCM simulant produced phosphate glasses with low levels of particulate inclusions, as confirmed by x-ray diffraction and scanning electron microscopy. Particulates included iron-rich metallics and aluminous oxides. Increased melting times and temperatures may have reduced the number of inclusions slightly, but O2 bubbling during melting resulted in little additional benefit. Waste loading equivalent to ∼60 weight % of untreated waste may be possible. There was little evidence of Ce partitioning, indicating that it was immobilised within the glass matrix and had little preference for metallic or crystalline phases. These results demonstrate the potential feasibility for vitrification of PCM in phosphate glass, justifying further investigation into this potentially novel solution.


Author(s):  
Albert A. Kruger

The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP’s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33–50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.


Sign in / Sign up

Export Citation Format

Share Document