ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
Latest Publications


TOTAL DOCUMENTS

205
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By ASMEDC

9780791854983

Author(s):  
Tim. Hicks ◽  
Tamara Baldwin ◽  
Richard Cummings ◽  
Trevor Sumerling

The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1st of May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in buildings constructed on excavated spoil from the repository are a particular concern. Options for managing the emplacement of the radium-bearing waste packages with regard to human intrusion have been assessed. These calculations show that a managed waste emplacement strategy can ensure that calculated doses are consistent with regulatory guidance levels.


Author(s):  
Irina V. Sheveleva ◽  
Veniamin V. Zheleznov ◽  
Svetlana Yu. Bratskaya ◽  
Valery G. Kuryavyi ◽  
Valentin A. Avramenko

Among various methods of cesium removal from aqueous solutions, sorption using transition metals ferrocyanides is the most efficient method due to extremely high affinity of cesium ions to ferrocyanides. The efficiency of transition metals ferrocyanides application is known to depend on the crystal size being the highest for nanocrystals. Although nanocrystals are difficult to handle in direct application, they can be used in composite materials. In this case two main problems arise: how to control the crystal size of transition metals ferrocyanides and fix them reliably in the supporting matrix. Here we suggest a new route to preparation of composite materials selective to cesium ions using transition metals ferrocyanides stabilized by siloxane-acrylate latexes. The size of transition metals ferrocyanides is controlled by the size of latex particles and their stability is determined by ionization of polyacrylic acid carboxylic groups on the functionalized latex surface. These functionalized particles can be used as precursors in preparation of composite materials by sedimentation and polymerization of latexes on the solid surface of porous matrix, e.g. carbon fibers. Several routes of preparation of carbon fiber based composite materials using functionalized latexes and sorption properties of the obtained materials are discussed. The effect of preparation conditions (method used, carbon fiber polarization potential, concentration of latexes functionalized with transition metals ferrocyanides) on cesium uptake by composite sorbents from solutions of various salinity is reported.


Author(s):  
Dyan L. Foss ◽  
Briant L. Charboneau

The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990s, over 13.6 billion L of groundwater have been treated; over 1,435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, biostimulation, and electrocoagulation, currently under evaluation.


Author(s):  
Tomohiro Ito ◽  
Yoshihiro Fujiwara ◽  
Atsuhiko Shintani ◽  
Chihiro Nakagawa ◽  
Kazuhisa Furuta

The cask-canister system is a coaxial circular cylindrical structure in which several spent fuels are installed. This system is a free-standing structure thus, it is very important to reduce sliding motion for very large seismic excitations. In this study, we propose a mitigation method for sliding motion. Water is installed in an annular region between a cask and a canister. The equations of motion are derived taking fluid-structure interaction into consideration for nonlinear sliding motion analyses. Based on these equations, mitigation effects of sliding motions are studied analytically. Furthermore, a fundamental test model of a cask-canister system is fabricated and shaking table tests are conducted. From the analytical and test results, sliding motion mitigation effects are investigated.


Author(s):  
Hitoshi Owada ◽  
Tomoko Ishii ◽  
Mayumi Takazawa ◽  
Hiroyasu Kato ◽  
Hiroyuki Sakamoto ◽  
...  

A “realistic alteration model” is needed for various cementitious materials. Hypothetical settings of mineral composition calculated based on the chemical composition of cement, such as Atkins’s model, have been used to estimate the alteration of cementitious material. However, model estimates for the concentration of certain elements such as Al and S in leachate have been different from experimental values. In a previous study, we created settings for a mineralogical alteration model by taking the initial chemical composition of cementitious materials from analysis results in experiments and applying their ratios to certain hydrated cement minerals, then added settings for secondary generated minerals in order to account for Ca leaching. This study of alteration estimates for ordinary portland cement (OPC) in groundwater showed that the change in Al and S concentrations in simulated leachate approached values for actual leachate[1]. In the present study, we develop an appropriate mineral alteration model for blended cementitious materials and conduct batch-type leaching experiments that use crushed samples of blast furnace slag cement (BFSC), silica cement (SC), and fly ash cement (FAC). The cement blends in these experiments used OPC blended with blast furnace slag of 70 wt.%, silica cement consisting of an amorphous silica fine powder of 20 wt.%, and fly ash of 30 wt.%. De-ionized water was used as the leaching solution. The solid-liquid ratios in the leaching tests were varied in order to simulate the alteration process of cement hydrates. The compositions of leachate and minerals obtained from leaching tests were compared with those obtained from models using hypothetical settings of mineral composition. We also consider an alteration model that corresponds to the diversity of these materials. As a result of applying the conventional OPC model to blended cementitious materials, the estimated Al concentration in the aqueous solution was significantly different from the measured concentration. We therefore propose an improved model that takes better account of Al behavior by using a more reliable initial mineral model for Al concentration in the solution.


Author(s):  
Irina Gaus ◽  
Klaus Wieczorek ◽  
Juan Carlos Mayor ◽  
Thomas Trick ◽  
Jose´-Luis Garcia` Sin˜eriz ◽  
...  

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.


Author(s):  
Daniel F. Parvin ◽  
Thomas Huys

On the sites of Belgoprocess several thousands of drums containing conditioned legacy waste are stored. A significant number of these waste packages are 220 litre drums containing radioactive waste embedded into inactive bitumen. Most of the radioactive waste in these drums was generated during the development and production of MOX-fuels and the operation of the Eurochemic reprocessing plant. The current state of a number of these packages is no longer acceptable for long term storage. In order to make the waste packages acceptable for interim storage a repackaging process was developed. The process involves the repackaging of the waste items into 400 or 700 litre waste drums and a non-destructive gamma-ray assay (NDA) measurement performed on the new package. The aim of the NDA measurement is to detect significant quantities of fissile material in order to demonstrate compliance with the operational limits of the storage building. Since the waste items are destined for geological disposal, there is no specific need for a detection limit in the order of milligrams of plutonium as required for surface disposal. To meet this NDA requirement Babcock International Group supplied, calibrated and commissioned an open geometry system from its HRGS product range. The DrumScan® HRGS Solo assay system was delivered to the Belgoprocess site in 2009 after completing a series of factory acceptance tests performed in the UK. In May 2009 after successful completion of the site acceptance tests performed in Belgium, the system has been undergoing extensive testing and validation by Belgoprocess in order to demonstrate acceptance and compliance to the Belgian Radioactive Waste Agency, NIRAS/ONDRAF. After a careful evaluation of the qualification file, NIRAS/ONDRAF approved the system for operational measurements at the end of 2010. This paper provides a detailed description of the NDA requirement, calibration methodology, system validation tests and overall measurement performance of the system.


Author(s):  
Ulrich Quade ◽  
Thomas Kluth

Since more than 20 years the company Siempelkamp is deeply involved in the field of melting and recycling of radioactively contaminated metals from operation and decommissioning of nuclear installations across Europe. The experience of this long period shows clearly that only a combination of recycling inside the nuclear industry and release for reuse outside the nuclear market will generate the optimum results for the minimisation of radioactive waste volume. Final disposal volume is becoming more and more the status of an own resource within our nuclear business and should be handled very carefully in the future. The paper gives a compact overview about the impressive results of melting treatment, the current potential of the melting plant CARLA and about further developments.


Author(s):  
Satoru Miyoshi ◽  
Shinya Morikami ◽  
Yukinobu Kimura ◽  
Tomoko Jinno ◽  
Shuichi Yamamoto

The laboratory experiment was done that 1.0mol/L sodium hydroxide solution was injected to the compacted bentonite whose density is the same as the prospected value in the concept of the intermediate-level disposal in Japan in the circumstance of 70°C temperature. After the injection of the alkali solution for approximately 600 days, the bentonite was taken out of the apparatus and some sorts of analysis were done. The accompanying minerals in the bentonite, calcedony and quartz, were dissolved and disappeared in XRD charts. Then analcime was precipitated as a secondary mineral. Although montmorillonite was dissolved, the mass fraction of it was kept approximately. The hydraulic conductivity of the bentonite calculated using the flow rate at the end of the injection of alkali solution was smaller than the prospected value based on a widely-used empirical model of the hydraulic conductivity of compacted bentonite as a function of the equivalent concentration of pore solution, montmorillonite partial void ratio, and the ratio of sodium ion equivalent to the exchangeable cation equivalent. The reasons for the difference were supposed to be the decrease of pore size brought by mineral dissolution and the large viscosity of pore solution involving high concentration aqueous silicon.


Author(s):  
Guy Granier ◽  
Danie`le Roudil ◽  
Didier Dubot

In France, the nuclear industry has developed a substantial program for decommissioning plants and nuclear installations, and for remediating and rehabilitating industrial sites. The Commission for the Establishment of Analysis Methods (CETAMA) is a unit of the French Alternative Energies and Atomic Energy Commission (CEA) whose main objective is to improve the quality of analysis and measurement results in the nuclear field. Analysis is the primary tool for monitoring the spread of nuclear material. This document shows that sampling, in close relation with measurement techniques, is a factor of potential gain and risk reduction for site remediation, decommissioning, and rehabilitation projects.


Sign in / Sign up

Export Citation Format

Share Document