scholarly journals In silico screening of bioactive compounds from various medicinal plants for α-2 neuronal nicotinic acetylcholine receptor inhibitor candidate

2021 ◽  
Author(s):  
Wira Eka Putra ◽  
Hendra Susanto ◽  
Sri Rahayu Lestari ◽  
Abdul Gofur ◽  
Wa Ode Salma ◽  
...  
Author(s):  
Sarath Sasi Kumar ◽  
Anjali T

Objective: In silico design and molecular docking of 1,2-benzisoxazole derivatives for their analgesic and anti-inflammatory activity using computational methods.Methods: In silico molecular properties of 1,2-benzisoxazole derivatives were predicted using various software’s such as Chemsketch, Molinspiration, PASS and Schrodinger to select compounds having optimum drug-likeness, molecular descriptors resembling those of standard drugs and not violating the ‘Lipinski rule of 5’. Molecular docking was performed on active site of nicotinic acetylcholine receptor (PDB: 2KSR) for analgesic activity and COX-2 (PDB: 6COX) for anti-inflammatory activity using Schrodinger under maestro molecular modelling environment.Results: From the results of molecular docking studies of 1,2-benzisoxazole derivatives, all the compounds showed good binding interactions with Nicotinic acetylcholine receptor and COX-2. Compounds 4a and 4c showed highest binding scores (-7.46 and-7.21 respectively) with nicotinic acetylcholine receptor and exhibited maximum analgesic activity. Compound 4a showed highest binding score (-7.8) with COX-2 and exhibited maximum anti-inflammatory activity.Conclusion: All the derivatives of 1,2-benzisoxazole showed good analgesic and anti-inflammatory activity as predicted using molecular docking on respective receptors.


2008 ◽  
Vol 284 (8) ◽  
pp. 4944-4951 ◽  
Author(s):  
Emma L. Millard ◽  
Simon T. Nevin ◽  
Marion L. Loughnan ◽  
Annette Nicke ◽  
Richard J. Clark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document