ohmic resistance
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 50)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jorrit Bleeker ◽  
Stijn Reichert ◽  
Joost Veerman ◽  
David Vermaas

Abstract Here we assess the route to convert low grade waste heat (<100°C) into electricity by leveraging the temperature dependency of redox potentials (Seebeck effect). We use fluid-based redox-active species, which can be easily heated and cooled using heat exchangers. By using a first principles approach, we designed a redox flow battery system with Fe(CN)63−/Fe(CN)64− and I−/I3− chemistry. We evaluate the continuous operation with one flow cell at high temperature and one at low temperature. We show that the most sensitive parameter, the Seebeck coefficient, can be controlled via the redox chemistry, the reaction quotient and solvent additives, and we present the highest Seebeck coefficient for this RFB chemistry. A power density of 0.6 W/m2 and stable operation for 2 hours are achieved experimentally. We predict high (close to Carnot) heat-to-power efficiencies if challenges in the heat recuperation and Ohmic resistance are overcome, and the Seebeck coefficient is further increased.


Author(s):  
Arash Bahrololoomi ◽  
Hubert K Bilan ◽  
Elizabeth J Podlaha

Abstract A composite electrode composed of electrodeposited, nickel-iron nanostructured clusters onto a glassy carbon (GC) disk electrode was used as a working electrode to detect methylene blue at concentrations below 10 μM. The Ni-Fe clusters were prepared by pulse electrodeposition and a lateral composition variation was observed reflective of a local pH change across the Ni-Fe feature. The applied potential for the detection of MB at a pH of 4 was determined through voltammetry and demonstrated using chronoamperometry and electrochemical impedance spectroscopy (EIS) where the adsorption of MB influenced both the capacitance, C, and ohmic resistance, Rs. A peak present in it1/2 vs t chronoamperometry plots decreased with lower MB bulk concentration, while in contrast, the RsC parameters determined from equivalent circuit models of EIS had the opposite behavior having a larger signal with lower MB concentration, and hence providing a way to increase the detection signal at lower MB concentration.


Author(s):  
Ana Elisa Ferreira Oliveira ◽  
Arnaldo César Pereira ◽  
Lucas Franco Ferreira

The purpose of this work was the fabrication of a conductive carbon nanotube (CNT) ink. The proposed CNT ink remained remarkably stable over several months. The method includes combining the covalent and non-covalent functionalization, resulting in ink that exhibits excellent storage stability. The covalent functionalization was performed in the acid medium using H2SO4 and HNO3, while the non-covalent functionalization used sodium dodecyl sulfate (SDS) and ultrasonication. The materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), electro­chemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). FTIR and SEM confirmed that at the non-covalent functionalization, SDS was successfully adsorbed on the f-CNT surface, while at the covalent functionalization, the functional groups (-COOH, C=O and -OH) were inserted into the CNT surface. Voltammetry and EIS indicated that SDS in the presence of functional groups facilitates electron transfer by improved electrical conductivity. The final product was a well-dispersed CNT ink with an average ohmic resistance of 18.62 kΩ. This indicates that CNT ink can be used in the fabrication of electrochemical sensors.


2021 ◽  
Vol 105 (1) ◽  
pp. 151-158
Author(s):  
Petr Křivík ◽  
Petr Baca ◽  
Jiri Kazelle

The paper deals with the measurement of the cell impedance parameters during discharging and charging of the AGM 200Ah 6V Sun Power lead acid battery. Real and imaginary part of impedance of the battery were measured by PEIS method. Results of the impedance changes during discharging and charging were plot to Nyquist diagrams. Important values - ohmic resistance RS, charge transfer resistance RCT, double layer capacity CDL and Warburg coefficient σ were found during discharging and charging of the solar battery.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3095
Author(s):  
Rumen I. Tomov ◽  
Thomas B. Mitchel-Williams ◽  
Eleonora Venezia ◽  
Michal Kawalec ◽  
Mariusz Krauz ◽  
...  

Single-step inkjet printing infiltration with doped ceria Ce0.9Ye0.1O1.95 (YDC) and cobalt oxide (CoxOy) precursor inks was performed in order to modify the properties of the doped ceria interlayer in commercial (50 × 50 × 0.5 mm3 size) anode-supported SOFCs. The penetration of the inks throughout the La0.8Sr0.2Co0.5Fe0.5O3−δ porous cathode to the Gd0.1Ce0.9O2 (GDC) interlayer was achieved by optimisation of the inks’ rheology jetting parameters. The low-temperature calcination (750 °C) resulted in densification of the Gd-doped ceria porous interlayer as well as decoration of the cathode scaffold with nanoparticles (~20–50 nm in size). The I–V testing in pure hydrogen showed a maximum power density gain of ~20% at 700 °C and ~97% at 800 °C for the infiltrated cells. The latter effect was largely assigned to the improvement in the interfacial Ohmic resistance due to the densification of the interlayer. The EIS study of the polarisation losses of the reference and infiltrated cells revealed a reduction in the activation polarisations losses at 700 °C due to the nano-decoration of the La0.8Sr0.2Co0.5Fe0.5O3−δ scaffold surface. Such was not the case at 800 °C, where the drop in Ohmic losses was dominant. This work demonstrated that single-step inkjet printing infiltration, a non-disruptive, low-cost technique, can produce significant and scalable performance enhancements in commercial anode-supported SOFCs.


Author(s):  
Juho Kerminen ◽  
Jenny Wiklund ◽  
Alp Karakoç ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
...  

In the present work, cost-effective strain gauges were fabricated by using inkjet printing and photonic curing on flexible and recyclable PET substrates. Ohmic resistance (a.k.a. DC resistance) (R0) and complex electrical impedance (Z) as a function of test frequency were characterized, respectively, with the state-of-the-art electronic testing equipments. For the fabrication process, commercially available silver nanoparticle (AgNP) inks and printing substrates were used in order to eliminate any apriori ink processing. In order to validate the in-house cantilever beam measurement setup and devices, first, commercially available metallic foil strain gauges (with the provided gauge factor GF=2 by the manufacturer) were tested at different locations. Thereafter, the printed strain gauges were investigated with several repetitions at different measurement locations. The measurement results demonstrated an affordable, rapid and tailorable design and repeatable fabrication approach for strain gauges with GFavg~6.6, which has potential applications in remote sensing and structural monitoring applications.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1142
Author(s):  
Omayma A. Elkady ◽  
Hossam M. Yehia ◽  
Aya A. Ibrahim ◽  
Abdelhalim M. Elhabak ◽  
Elsayed. M. Elsayed ◽  
...  

In this study, Al/5 Ni/0.2 GNPs/x SiC (x = 5, 10, 15, and 20 wt%) nanocomposites were constituted using the powder metallurgy–hot pressing technique. The SiC particles and GNPs were coated with 3 wt% Ag using the electroless deposition technique then mixed with an Al matrix and 5% Ni using ball milling. The investigated powders were hot-pressed at 550 °C and 600 °C and 800 Mpa. The produced samples were evaluated by studying their densification, microstructure, phase, chemical composition, hardness, compressive strength, wear resistance, and thermal expansion. A new intermetallic compound formed between Al and Ni, which is aluminum nickel (Al3Ni). Graphene reacted with the Ni and formed the nickel carbide Ni3C. Additionally, it reacted with the SiC and formed the nickel–silicon composite Ni31Si12 at different percentages. A proper distribution for Ni, GNs, and SiC particles and excellent adhesion were observed. No grain boundaries between the Al matrix particles were discovered. Slight increases in the density values and quite high convergence were revealed. The addition of 0.2 wt% GNs to Al-5Ni increased the hardness value by 47.38% and, by adding SiC-Ag to the Al-5Ni-0.2GNs, the hardness increased gradually. The 20 wt% sample recorded 121.6 HV with a 56.29% increment. The 15 wt% SiC sample recorded the highest compressive strength, and the 20 wt% SiC sample recorded the lowest thermal expansion at the different temperatures. The five Al-Ni-Gr-SiC samples were tested as an electrode for electro-analysis processes. A zinc oxide thin film was successfully prepared by electrodeposition onto samples using a zinc nitrate aqueous solution at 25 °C. The electrodeposition was performed using the linear sweep voltammetric and potentiostatic technique. The effect of the substrate type on the deposition current was fully studied. Additionally, the ohmic resistance polarization values were recorded for the tested samples in a zinc nitrate medium. The results show that the sample containing the Al-5 Ni-0.2 GNs-10% SiC composite is the most acceptable sample for these purposes.


2021 ◽  
Vol 1045 ◽  
pp. 186-193
Author(s):  
Meng Qian Xue ◽  
Cai Ping Wan ◽  
Nian Nian Ge ◽  
Heng Yu Xu

In order to understand the contribution of various metals in the formation of ohmic contacts, Ni/Al/Ti ohmic contacts on n-type 4H-SiC in terms of a different annealing temperature and Ti composition are investigated, which is more difficult to form than p-type ohmic contact. The formation of the Ni/Al/Ti metal alloy system is much more sensitive to metal composition than annealing conditions. With the increase of metal composition, the contact with a high Ti content yields a lower specific contact resistivity compared with the low Ti contact. The annealed surface morphology and phase resultants were examined by scanning electron microscopy (SEM) and atomic force microscope (AFM), respectively. With the increase of Ti components, the surface morphology of the samples becomes more uniform and smoother, while the surface roughness remains unchanged. It implies that Ti metal can not only reduce the ohmic resistance, but also protect the surface of the sample and maintain the roughness.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1073
Author(s):  
Sixbert P. Muhoza ◽  
Michael D. Gross

A novel processing method that creates and preserves ceramic nanoparticles in solid oxide electrodes during co-sintering at traditional sintering temperatures is introduced. Specifically, carbon templated samarium-doped ceria nanoparticles (nSDC) were successfully integrated with commercial lanthanum strontium cobalt ferrite (LSCF) and commercial SDC powders, producing LSCF-SDC-nSDC cathodes upon processing. The effect of nSDC concentration on cathode electrocatalytic activity was investigated at low operational temperatures, 600 °C–700 °C, with symmetrical cells. Low nSDC loadings, ≤5 wt% nSDC, significantly decreased cell polarization resistance whereas higher loadings increased it. The best electrochemical performance was achieved with 5 wt% nSDC, lowering the polarization resistance by 41% at 600 °C. Fuel cell tests demonstrate that adding 5 wt% nSDC increased the maximum fuel cell power density by 38%. Electrochemical impedance spectra showed substantial improvements in both fuel cell polarization resistance and ohmic resistance, indicating that nSDC increased the electrocatalytically active area of the cathode. This work demonstrates a simple, novel method for effectively increasing electrocatalytic activity of solid oxide electrodes at low operational temperatures.


Author(s):  
Mei Li ◽  
Yiwei Wang ◽  
Jiabin Guo ◽  
Xiaoliang Li ◽  
Pengcheng Guo

Abstract This paper presents an experimental study on the performance of a RED stack for SELEMION, ASTOM and FUJI membranes with the cell pair number from 3 to 15 and flow rate from 5 to 60 L/h over a wide solution concentration range from 1 to 120 g/L. DC and AC measurements are employed to identify quantatively the contribution of ohmic and non-ohmic resistances to the stack resistance and then, the power output is predicted theoretically. The results show that the ohmic resistance dominates in the stack resistance and accounts for about 90%. The factors such as the membrane type, cell pair, solution concentration and flow rate have a considerable impact on power generation process of RED. Especially, simultaneous increasing the HC and LC solution concentrations is more conducive to suppressing the concentration polarization when compared with increasing LC solution concentration alone. Although the concentration polarization maintains declining with the increase in flow rate, the flow rate should not be too large in order to harvest the highest power output by reason of serious tangential flow at higher flow rates. The optimal performance of RED stack is obtained when SELEMION membranes are used with cell pairs of 5, HC-LC solution concentration of 120-4 g/L and feed flow rate of 20 L/h.


Sign in / Sign up

Export Citation Format

Share Document