Sure independent screening elastic net for ultra-high dimensional survival data

2021 ◽  
Author(s):  
Ali Hussain AL-Rammahi ◽  
Tahir R. Dikheel
Biometrics ◽  
2005 ◽  
Vol 62 (1) ◽  
pp. 202-210 ◽  
Author(s):  
Shuangge Ma ◽  
Michael R. Kosorok ◽  
Jason P. Fine

2018 ◽  
Vol 28 (5) ◽  
pp. 1523-1539
Author(s):  
Simon Bussy ◽  
Agathe Guilloux ◽  
Stéphane Gaïffas ◽  
Anne-Sophie Jannot

We introduce a supervised learning mixture model for censored durations (C-mix) to simultaneously detect subgroups of patients with different prognosis and order them based on their risk. Our method is applicable in a high-dimensional setting, i.e. with a large number of biomedical covariates. Indeed, we penalize the negative log-likelihood by the Elastic-Net, which leads to a sparse parameterization of the model and automatically pinpoints the relevant covariates for the survival prediction. Inference is achieved using an efficient Quasi-Newton Expectation Maximization algorithm, for which we provide convergence properties. The statistical performance of the method is examined on an extensive Monte Carlo simulation study and finally illustrated on three publicly available genetic cancer datasets with high-dimensional covariates. We show that our approach outperforms the state-of-the-art survival models in this context, namely both the CURE and Cox proportional hazards models penalized by the Elastic-Net, in terms of C-index, AUC( t) and survival prediction. Thus, we propose a powerful tool for personalized medicine in cancerology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yidan Cui ◽  
Chengwen Luo ◽  
Linghao Luo ◽  
Zhangsheng Yu

Mediation analysis has been extensively used to identify potential pathways between exposure and outcome. However, the analytical methods of high-dimensional mediation analysis for survival data are still yet to be promoted, especially for non-Cox model approaches. We propose a procedure including “two-step” variable selection and indirect effect estimation for the additive hazards model with high-dimensional mediators. We first apply sure independence screening and smoothly clipped absolute deviation regularization to select mediators. Then we use the Sobel test and the BH method for indirect effect hypothesis testing. Simulation results demonstrate its good performance with a higher true-positive rate and accuracy, as well as a lower false-positive rate. We apply the proposed procedure to analyze DNA methylation markers mediating smoking and survival time of lung cancer patients in a TCGA (The Cancer Genome Atlas) cohort study. The real data application identifies four mediate CpGs, three of which are newly found.


2021 ◽  
Author(s):  
Mu Yue

In high-dimensional data, penalized regression is often used for variable selection and parameter estimation. However, these methods typically require time-consuming cross-validation methods to select tuning parameters and retain more false positives under high dimensionality. This chapter discusses sparse boosting based machine learning methods in the following high-dimensional problems. First, a sparse boosting method to select important biomarkers is studied for the right censored survival data with high-dimensional biomarkers. Then, a two-step sparse boosting method to carry out the variable selection and the model-based prediction is studied for the high-dimensional longitudinal observations measured repeatedly over time. Finally, a multi-step sparse boosting method to identify patient subgroups that exhibit different treatment effects is studied for the high-dimensional dense longitudinal observations. This chapter intends to solve the problem of how to improve the accuracy and calculation speed of variable selection and parameter estimation in high-dimensional data. It aims to expand the application scope of sparse boosting and develop new methods of high-dimensional survival analysis, longitudinal data analysis, and subgroup analysis, which has great application prospects.


Sign in / Sign up

Export Citation Format

Share Document