Design, experiment, and performance analysis of magnetorheological clutch with uniform magnetic field distribution along the radial direction for tension control

2021 ◽  
Vol 92 (12) ◽  
pp. 125006
Author(s):  
Shuyou Wang ◽  
Fei Chen ◽  
Zuzhi Tian ◽  
Aimin Li ◽  
Xiangfan Wu
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Davor Vinko ◽  
Domagoj Bilandžija ◽  
Vanja Mandrić Radivojević

Conventional magnetically coupled resonant wireless power transfer systems are faced with resonant frequency splitting phenomena and impedance mismatch when a receiving coil is placed at misaligned position. These problems can be avoided by using uniform magnetic field distribution at receiving plane. In this paper, a novel 3D transmitting coil structure with improved uniform magnetic field distribution is proposed based on a developed optimization method. The goal is to maximize the average magnetic field strength and uniform magnetic field section of the receiving plane. Hence, figures of merit (FoM1 and FoM2) are introduced and defined as product of average magnetic field strength and length or surface along which uniform magnetic field is generated, respectively. The validity of the optimization method is verified through laboratory measurements performed on the fabricated coils driven by signal generator at operating frequency of 150 kHz. Depending on the allowed ripple value and predefined coil proportions, the proposed transmitting coil structure gives the uniform magnetic field distribution across 50% to 90% of the receiving plane.


Sign in / Sign up

Export Citation Format

Share Document