Wireless Power Transfer
Latest Publications


TOTAL DOCUMENTS

108
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 2)

Published By Cambridge University Press

2052-8418

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongyang He ◽  
Yue Gao ◽  
Yong Zheng ◽  
Yining Liu

Companies that produce energy transmit it to any or all households via a power grid, which is a regulated power transmission hub that acts as a middleman. When a power grid fails, the whole area it serves is blacked out. To ensure smooth and effective functioning, a power grid monitoring system is required. Computer vision is among the most commonly utilized and active research applications in the world of video surveillance. Though a lot has been accomplished in the field of power grid surveillance, a more effective compression method is still required for large quantities of grid surveillance video data to be archived compactly and sent efficiently. Video compression has become increasingly essential with the advent of contemporary video processing algorithms. An algorithm’s efficacy in a power grid monitoring system depends on the rate at which video data is sent. A novel compression technique for video inputs from power grid monitoring equipment is described in this study. Due to a lack of redundancy in visual input, traditional techniques are unable to fulfill the current demand standards for modern technology. As a result, the volume of data that needs to be saved and handled in live time grows. Encoding frames and decreasing duplication in surveillance video using texture information similarity, the proposed technique overcomes the aforementioned problems by Robust Particle Swarm Optimization (RPSO) based run-length coding approach. Our solution surpasses other current and relevant existing algorithms based on experimental findings and assessments of different surveillance video sequences utilizing varied parameters. A massive collection of surveillance films was compressed at a 50% higher rate using the suggested approach than with existing methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Davor Vinko ◽  
Domagoj Bilandžija ◽  
Vanja Mandrić Radivojević

Conventional magnetically coupled resonant wireless power transfer systems are faced with resonant frequency splitting phenomena and impedance mismatch when a receiving coil is placed at misaligned position. These problems can be avoided by using uniform magnetic field distribution at receiving plane. In this paper, a novel 3D transmitting coil structure with improved uniform magnetic field distribution is proposed based on a developed optimization method. The goal is to maximize the average magnetic field strength and uniform magnetic field section of the receiving plane. Hence, figures of merit (FoM1 and FoM2) are introduced and defined as product of average magnetic field strength and length or surface along which uniform magnetic field is generated, respectively. The validity of the optimization method is verified through laboratory measurements performed on the fabricated coils driven by signal generator at operating frequency of 150 kHz. Depending on the allowed ripple value and predefined coil proportions, the proposed transmitting coil structure gives the uniform magnetic field distribution across 50% to 90% of the receiving plane.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Jing Zhou ◽  
Jiazhong He ◽  
Fan Zhu

Wireless power transfer has been proved promising in various applications. The homogeneous winding method in loosely coupled transformers incurs unnecessary intense magnetic field distribution in the center and causes extra magnetic loss. An inhomogeneous winding method is proposed in this paper, and a relatively homogeneous magnetic field distribution inside the core is achieved. This paper investigated the magnetic loss of homogeneous winding and inhomogeneous winding for wireless power transfer. A theoretical model was built to evaluate magnetic loss under inhomogeneous winding. The coupling coefficient and magnetic loss were investigated individually and comparisons were made between different width ratio combinations. Theoretical analysis was validated in experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
John Nicot ◽  
Ludivine Fadel ◽  
Thierry Taris

The widespread deployment of the Internet of Things (IoT) requires the development of new embedded systems, which will provide a diverse array of different intelligent functionalities. However, these devices must also meet environmental, maintenance, and longevity constraints, while maintaining extremely low-power consumption. In this work, a batteryless, low-power consumption, compact embedded system for IoT applications is presented. This system is capable of using a combination of hybrid solar and radiofrequency power sources and operates in the 900 MHz ISM band. It is capable of receiving OOK or ASK modulated data and measuring environmental data and can transmit information back to the requester using GFSK modulated data. The total consumption of the system during its sleep state is 920 nW. Minimum power required to operate is −15.1 dBm or 70 lux, when using only radiofrequency or solar powering, respectively. The system is fully designed with components off the shelf (COTS).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan Xing ◽  
Haowen Pan ◽  
Bin Xu ◽  
Cristiano Tapparello ◽  
Wei Shi ◽  
...  

In this paper, a multiantenna wireless transmitter communicates with an information receiver while radiating RF energy to surrounding energy harvesters. The channel between the transceivers is known to the transmitter, but the channels between the transmitter and the energy harvesters are unknown to the transmitter. By designing its transmit covariance matrix, the transmitter fully charges the energy buffers of all energy harvesters in the shortest amount of time while maintaining the target information rate toward the receiver. At the beginning of each time slot, the transmitter determines the particular beam pattern to transmit with. Throughout the whole charging process, the transmitter does not estimate the energy harvesting channel vectors. Due to the high complexity of the system, we propose a novel deep Q-network algorithm to determine the optimal transmission strategy for complex systems. Simulation results show that deep Q-network is superior to the existing algorithms in terms of the time consumption to fulfill the wireless charging process.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muayad Kod ◽  
Jiafeng Zhou ◽  
Yi Huang ◽  
Muaad Hussein ◽  
Abed P. Sohrab ◽  
...  

An approach to improve wireless power transfer (WPT) to implantable medical devices using loop antennas is presented. The antenna exhibits strong magnetic field and dense flux line distribution along two orthogonal axes by insetting the port inside the antenna area. This design shows excellent performance against misalignment in the y-direction and higher WPT as compared with a traditional square loop antenna. Two antennas were optimized based on this approach, one wearable and the other implantable. Both antennas work at both the ISM (Industrial, Scientific, and Medical) band of 433 MHz for WPT and the MedRadio (Medical Device Radiocommunications Service) band of 401–406 MHz for communications. To test the WPT for implantable medical devices, a miniaturized rectifier with a size of 10 mm × 5 mm was designed to integrate with the antenna to form an implantable rectenna. The power delivered to a load of 4.7 kΩ can be up to 1150 μW when 230 mW power is transmitted which is still under the safety limit. This design can be used to directly power a pacemaker, a nerve stimulation device, or a glucose measurement system which requires 70 μW, 100 μW, and 48 μW DC power, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hao Wang ◽  
Guangyu Shi ◽  
Congzheng Han

Wireless energy harvesting is an effective way to power condition monitoring sensors which are the basis of smart grid. In this paper, a new free-standing I-shaped core is designed to scavenge electromagnetic energy from large alternating current. An I-shaped core can guide more magnetic flux by adding a pair of magnetic flux collector plates at both ends of the rod core. It weakens the core demagnetization field and enables more energy to be collected. Since a magnetic field line can be bent with high-permeability soft magnetic materials, a highly efficient grid-shaped coil is proposed. Compared with the I-shaped coil, its weight is lighter and power density is higher. A Mn-Zn ferrite with high relative permeability and ultralow conductivity can effectively reduce eddy current loss, which proves to be the most suitable material. The measured open circuit voltage agrees well with the theoretical value. The experimental results show that the output power can reach 4.5 mW when the I-shaped coil is placed in a magnetic flux density of 6.5 μTrms. The power density is 7.28 μW/cm3. Therefore, the proposed design can be very effective for supplying condition monitoring sensors.


2020 ◽  
Vol 7 (2) ◽  
pp. 116-125
Author(s):  
Üstün Sağlam ◽  
Ahmet Tekin

AbstractDistribution of wireless power charging field uniformly on a large area pad is critical for power receivers, particularly for wearable devices, wherein small form factor coils are involved. Since the receiver coil size is quite limited in these types of applications, the device is very sensitive to the amount of field it could retain and hence, it needs special placement or snapping mechanism to fix it at an optimum location for reliable wireless charging. In order to overcome this limitation for the end-user, a dual-mode multi-coil power transceiver system is proposed; utilizing resonance filtering to increase the amount of total power delivered with the rather uniform spatial distribution. Two concentric coils; center one driven by 6.78-MHz high-frequency driver (A4WP) and the outer larger one with a 200-KHz low-frequency driver (Qi) with resonant blocker could transfer up to 50 mW standards compliant flat power to a 13-mm radius 30-turns wearable receiver coil everywhere across an 8-cm radius charging pad area without any alignment requirement or snapping. Two different feedback topologies corresponding to each of the H-Bridge power drivers were also presented as an automatic series resonance coil drive frequency lock mechanism, extracting peak powers for each system individually from a standard 5 V-1A USB wall charger.


2020 ◽  
Vol 7 (2) ◽  
pp. 106-115
Author(s):  
Umesh Kumar Soni ◽  
Ramesh Kumar Tripathi

AbstractIn this paper, a new design configuration has been proposed in which a prototype of resonant inductive power transfer-based contactless power transfer to wound rotor has been developed which provides field power to brushless alternating current (BLAC) or brushless direct current (BLDC) motors without the use of permanent magnets in the rotor. Further, wound field in the rotor of DC motor can be powered without carbon brushes. The proposed design facilitates motor performance improvement by adding an extra dimension of field flux control, while the armature circuit is conventionally fed from position detection and commutation schemes. It contains a primary multilayer concentrated coil fed with high-frequency resonating AC supply or switched mode supply. A single layer helical secondary coil coaxially fixed on the shaft receives high frequency wireless AC power transmitted from primary coil. Fast rectifier inside the hollow shaft and DC filter provides the transferred DC power to field terminals in the rotor. It has been verified that rotor power can be varied linearly with linear variation in input DC power with the highest efficiency at the resonant frequency. Available power to the rotor remains invariable with rotational speed and angle, which is a necessary requirement for rotor field. DC voltage on the rotor terminals can be effectively controlled during standstill as well as during rotation at any speed.


2020 ◽  
Vol 7 (2) ◽  
pp. 95-105
Author(s):  
Julian Moore ◽  
Sheng Xu ◽  
Bradford J. Wood ◽  
Hongliang Ren ◽  
Zion Tsz Ho Tse

AbstractRadiofrequency ablation (RFA) is a non-invasive image-guided procedure where tumors are heated in the body with electrical current. RFA procedures are commonly indicated for patients with limited local disease or who are not surgical candidates. Current methods of RFA use multiple cords and wires that ergonomically complicate the procedure and present the risk of cutting or shorting the circuit if they are damaged. A wireless RFA technique based on electromagnetic induction is presented in this paper. The transmitting and receiving coils were coupled to resonate at the same frequency to ensure the highest power output. The receiving coil was connected to two insulated electrodes on a catheter, which allowed the current to flow to the targeted tissue. The prototype system was tested with ex-vivo bovine tissue, which has similar thermal and electrical properties to human tissue. The setup can monitor the received power, efficiency, temperature, and ablation zone during ablation procedures. The maximum received power was 15 W, and the average maximum efficiency was 63.27%. The novel system was also able to ablate up to a 2 cm ablation zone in non-perfused tissue. This proof of concept for performing RFA wirelessly with electromagnetic induction may merit further optimization.


Sign in / Sign up

Export Citation Format

Share Document