Numerical investigation on film cooling of gas turbine blade using anti-vortex holes

2022 ◽  
Author(s):  
S. Sathish ◽  
S. Seralathan ◽  
D. Sai Sanjay ◽  
T. Sai Ram ◽  
T. Pradeep Kumar
2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


2012 ◽  
Vol 15 (2) ◽  
pp. 41-44
Author(s):  
Sang-Gwon Kim ◽  
Jong-Chul Lee ◽  
Youn-Jea Kim

1999 ◽  
Vol 122 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Shuye Teng ◽  
Dong Kee Sohn ◽  
Je-Chin Han

The film effectiveness and coolant jet temperature profile on the suction side of a gas turbine blade were measured using a transient liquid crystal and a cold-wire technique, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3×105. Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.6 to 1.2. Wake Strouhal number was kept at 0 and 0.1. Results show that unsteady wake reduces film cooling effectiveness. Results also show that film injection enhances local heat transfer coefficient while the unsteady wake promotes earlier boundary-layer transition. The development of coolant jet temperature profiles could be used to explain the film cooling performance. [S0889-504X(00)00402-5]


Sign in / Sign up

Export Citation Format

Share Document