Hybridizing piezoelectric and electromagnetic mechanisms with dynamic bistability for enhancing low-frequency rotational energy harvesting

2021 ◽  
Vol 119 (24) ◽  
pp. 243903
Author(s):  
Shitong Fang ◽  
Juntong Xing ◽  
Keyu Chen ◽  
Xinlei Fu ◽  
Shengxi Zhou ◽  
...  
Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


2016 ◽  
Vol 773 ◽  
pp. 012058 ◽  
Author(s):  
M Febbo ◽  
S P Machado ◽  
J M Ramirez ◽  
C D Gatti

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2017 ◽  
Vol 53 (5) ◽  
pp. 4965-4972 ◽  
Author(s):  
Robert A. Sowah ◽  
Moses Amoasi Acquah ◽  
Abdul R. Ofoli ◽  
Godfrey A. Mills ◽  
Koudjo M. Koumadi

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 598 ◽  
Author(s):  
Kwangseok Lee ◽  
Jeong-won Lee ◽  
Kihwan Kim ◽  
Donghyeon Yoo ◽  
Dong Kim ◽  
...  

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid–solid and solid–liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.


Sign in / Sign up

Export Citation Format

Share Document