Broadband Rotational Energy Harvesting Using Micro Energy Harvester

Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).

2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


2012 ◽  
Vol 24 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ling Bu ◽  
Xiaoming Wu ◽  
Xiaohong Wang ◽  
Litian Liu

This article presents the modeling, fabrication, and testing of liquid encapsulated energy harvester using polyvinylidene fluoride electrets. Unlike harvesters reported in previous literature, this liquid encapsulated energy harvester uses flowing liquid rather than conventional resonating structures to induce variable capacitance and is more suitable for low-frequency applications. Prototypes injected with three types of liquid ( N-methyl-2-pyrrolidone, N, N-dimethylformamide, and glycerin) are tested in horizontal vibration and rotary motion mode, respectively. The results show that N, N-dimethylformamide–injected prototypes display the most desirable performance in horizontal vibration testing at 1–10 Hz due to high relative permittivity and low viscosity, with maximum output voltage of 2.32 V and power of 0.18 µW at 10 Hz. Glycerin-injected prototypes perform best at 0.1–1 Hz rotation due to effective movement and highest permittivity, with maximum output voltage of 11.46 V and power of 2.19 µW at 1 Hz.


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Tao Li ◽  
Pooi Lee

A piezoelectric energy harvester was developed in this paper. It is actuated by the vibration leakage from the nodal position of a high-power ultrasonic cutting transducer. The harvester was excited at a low displacement amplitude (0.73 µmpp). However, its operation frequency is quite high and reaches the ultrasonic range (24.4 kHz). Compared with another low frequency harvester (66 Hz), both theoretical and experimental results proved that the advantages of this high frequency harvester include (i) high current generation capability (up to 20 mApp compared to 1.3 mApp of the 66 Hz transducer) and (ii) low impedance matching resistance (500 Ω in contrast to 50 kΩ of the 66 Hz transducer). This energy harvester can be applied either in sensing, or vibration controlling, or simply energy harvesting in a high-power ultrasonic system.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Min Zhang ◽  
Junlei Wang

A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV) and wake-induced vibrations (WIV) by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV) types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 933 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Federico Fune ◽  
Luca Lampani ◽  
Franco Mastroddi ◽  
...  

In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ.


Author(s):  
H. Li ◽  
S. D. Hu ◽  
H. S. Tzou

Piezoelectric energy harvesting has experienced significant growth over the past few years. Various harvesting structures have been proposed to convert ambient vibration energies to electrical energy. However, these harvester’s base structures are mostly beams and some plates. Shells have great potential to harvest more energy. This study aims to evaluate a piezoelectric coupled conical shell based energy harvester system. Piezoelectric patches are laminated on the conical shell surface to convert vibration energy to electric energy. An open-circuit output voltage of the conical energy harvester is derived based on the thin-shell theory and the Donnel-Mushtari-Valsov theory. The open-circuit voltage and its derived energy consists of four components respectively resulting from the meridional and circular membrane strains, as well as the meridional and circular bending strains. Reducing the surface of the harvester to infinite small gives the spatial energy distribution on the shell surface. Then, the distributed modal energy harvesting characteristics of the proposed PVDF/conical shell harvester are evaluated in case studies. The results show that, for each mode with unit modal amplitude, the distribution depends on the mode shape, harvester location, and geometric parameters. The regions with high strain outputs yield higher modal energies. Accordingly, optimal locations for the PVDF harvester can be defined. Also, when modal amplitudes are specified, the overall energy of the conical shell harvester can be calculated.


2019 ◽  
Vol 136 ◽  
pp. 02017
Author(s):  
Min Liu ◽  
Hui Xia ◽  
Guoqiang Liu ◽  
Dong Xia

A finite element fluid-solid coupling model for ocean energy harvester based on piezoelectric vortex-induced vibration(VIV) is established. Given that the Karman Vortex Street is generated after the fluid passes through the vibrator. The model includes the conversion of water flow energy to VIV energy and the capture of electrical energy by piezoelectric devices. And the output voltage curve is obtained by coupling with piezoelectric beam. Based on the fluid-solid coupling calculation, the dynamic response characteristics of the oscillator under different parameters such as shape of oscillators and fluid velocity are studied. The voltage output of piezoelectric beam in cylindrical, semi-cylindrical and regular triangular oscillators is analyzed. Simulation results show that the output voltage and pressure difference are largest in regular triangular oscillator system compared with the cylindrical and semi-cylindrical system. When changing fluid velocity, it is found that the higher the velocity of the water fluid be, the higher the output voltage be. When the given fluid velocity reaches 1 m/s, the maximum output voltage of cylindrical, semi-cylindrical and regular triangular piezoelectric energy harvesters reaches 0.045V, 0.08V, and 0.085V respectively. Under the same fluid velocity, change the ratio of height and width of oscillator, and find that the higher ratio of height and width of oscillator is more suitable to harvest the energy of VIV.


2019 ◽  
Vol 30 (7) ◽  
pp. 1105-1114 ◽  
Author(s):  
Dongxing Cao ◽  
Xiangying Guo ◽  
Wenhua Hu

The transformation of waste vibration energy into low-power electricity has been intensely researched over the last decade to enable self-sustained wireless electronic components. Many kinds of nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. The negative stiffness vibration isolator, as a kind of passive vibration isolator, has undergone extensive investigation because of its low-frequency isolator characteristics. In this article, a novel broadband piezoelectric vibration energy harvester, which can be used for low-frequency ambient mechanical energy harvesting, is designed, and its dynamic responses are analyzed based on the advantage of the negative stiffness vibration isolator. The multi-scale perturbation method is applied to solve the electromechanical equations of the piezoelectric vibration energy harvester and obtain approximate analytical solutions. Solutions based on the analytical method and numerical simulations reveal the characteristics of significant broadband performance. The effects of the various system parameters on the frequency responses and output voltage of the piezoelectric vibration energy harvester system are investigated in detail, and the vibration isolation ability is verified by experimental measurements. It was concluded that the proposed piezoelectric vibration energy harvester achieved broadband vibration energy harvesting in the low-frequency vibration range.


Sign in / Sign up

Export Citation Format

Share Document