Visual Persistence as a Function of Spatial Frequency and Age

Perception ◽  
1980 ◽  
Vol 9 (5) ◽  
pp. 529-532 ◽  
Author(s):  
William Lovegrove ◽  
Margaret Heddle

Duration of visual persistence for sine-wave gratings of 1, 2, 4, 8, 12, and 16 cycles deg−1 was determined for seven-year-old, ten-year-old, and thirteen-year-old children. It was found that there was a decrease in persistence duration with age but the slope of this function for the different age groups did not change.

Perception ◽  
1973 ◽  
Vol 2 (2) ◽  
pp. 127-133 ◽  
Author(s):  
J Atkinson ◽  
F W Campbell ◽  
A Fiorentini ◽  
L Maffei

The effect of change in spatial frequency on the alternation rate of two crossed gratings was measured. The rate was found to decrease with increase in spatial frequency, but to change only little with contrast. Low alternation rate was observed for crossed square-wave gratings compared to crossed sine-wave gratings; here the rate of rivalry is largely dependent upon the presence or absence of the first three harmonic components rather than the higher harmonics which contribute to the sharp edges of the square wave. The results are compared with those for some ambiguous figures.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 156-156
Author(s):  
P Thompson ◽  
R Stone ◽  
E Walton

We have measured the retention of information about stimulus speed in visual short-term memory by measuring speed discrimination in a two-interval forced-choice task. We have also measured such discrimination in conditions where a ‘memory masker’ is presented during the interstimulus interval (ISI) in a fashion analogous to the experiment of Magnussen et al (1991 Vision Research31 1213 – 1219). Magnussen et al found that spatial frequency discrimination was disrupted when the mask had a spatial frequency that differed from the test spatial frequency by an octave or more. We have investigated the speed discrimination of 8 Hz, 1 cycle deg−1 drifting sine-wave gratings with the following drifting masks presented in the ISI: (i) 8 Hz 1 cycle deg−1, same direction as the test; (ii) 8 Hz, 8 cycles deg−1, opposite direction to the test; (iii) 8 Hz, 8 cycles deg−1, same direction as the test; (iv) 24 Hz, 3 cycles deg−1, same direction as the test. These masks were chosen to investigate whether the temporal frequency, the spatial frequency, the speed, or the direction of motion of the mask affected retention. We found that in none of these conditions was the discrimination of the test gratings impaired significantly. This pattern of results is therefore different from that found with spatial frequency discrimination and suggests that, whatever mechanism is responsible for the retention of information about speed, it is different from that responsible for the retention of information about spatial frequency.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


1992 ◽  
Vol 75 (1) ◽  
pp. 275-283
Author(s):  
Nico A. M. Schellart

Photopic contrast sensitivity of air-breathing scuba divers was measured with a translucent test pattern at depths up to 40 m. The pattern was composed of sine wave gratings with spatial frequency and contrast changing logarithmically. The spatial transfer characteristics were measured at various depths under controlled optical conditions in seawater and in fresh water. Analysis indicates that the visual contrast sensitivity, and therefore probably also acuity, of sport divers is not affected up to depths of 40 m. This holds under ideal as well as poor diving conditions.


2005 ◽  
Vol 8 (2) ◽  
pp. 113-118
Author(s):  
Miguel A. García-Pérez

Visual functioning at various retinal illuminance levels is usually measured either by determining grating acuity as a function of light level or by determining how sensitivity to sine-wave gratings changes with retinal illuminance. The former line of research has shown that grating acuity follows a two-branch relationship with retinal illuminance, with the point of discontinuity occurring at the transition from scotopic to photopic vision. Results of the latter line of research have summarily been described as a transition from the DeVries-Rose law to Weber's law, according to which log sensitivity increases linearly with log illuminance with a slope of 0.5 over a range of low illuminances (the DeVries-Rose range) and then levels off and does not increase with further increases of illuminance (the Weber range). This paper aims at determining the compatibility of the results of these two lines of research. We consider empirical constraints from data bearing on the shape of the surface describing contrast sensitivity to sine-wave gratings as a function of spatial frequency and illuminance simultaneously, in order to determine whether they are consistent with a summary description in terms of DeVries-Rose and Weber's laws. Our analysis indicates that, with sine-wave gratings, the DeVries-Rose law can only hold empirically at low spatial frequencies.


2001 ◽  
Vol 85 (4) ◽  
pp. 1512-1521 ◽  
Author(s):  
N.S.C. Price ◽  
M. R. Ibbotson

The visual response properties of nondirectional wide-field sensitive neurons in the wallaby pretectum are described. These neurons are called scintillation detectors (SD-neurons) because they respond vigorously to rapid, high contrast visual changes in any part of their receptive fields. SD-neurons are most densely located within a 1- to 2-mm radius from the nucleus of the optic tract, interspersed with direction-selective retinal slip cells. Receptive fields are monocular and cover large areas of the contralateral visual field (30–120°). Response sizes are equal for motion in all directions, and spontaneous activities are similar for all orientations of static sine-wave gratings. Response magnitude increases near linearly with increasing stimulus diameter and contrast. The mean response latency for wide-field, high-contrast motion stimulation was 43.4 ± 9.4 ms (mean ± SD, n = 28). The optimum visual stimuli for SD-neurons are wide-field, low spatial frequency (<0.2 cpd) scenes moving at high velocities (75–500°/s). These properties match the visual input during saccades, indicating optimal sensitivity to rapid eye movements. Cells respond to brightness increments and decrements, suggesting inputs from on and off channels. Stimulation with high-speed, low spatial frequency gratings produces oscillatory responses at the input temporal frequency. Conversely, high spatial frequency gratings give oscillations predominantly at the second harmonic of the temporal frequency. Contrast reversing sine-wave gratings elicit transient, phase-independent responses. These responses match the properties of Y retinal ganglion cells, suggesting that they provide inputs to SD-neurons. We discuss the possible role of SD-neurons in suppressing ocular following during saccades and in the blink or saccade-locked modulation of lateral geniculate nucleus activity to control retino-cortical information flow.


Perception ◽  
1989 ◽  
Vol 18 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Victor Klymenko ◽  
Naomi Weisstein

The figure – ground organization of an ambiguous bipartite pattern in which the two regions of the pattern contained sine-wave gratings which differed in spatial frequency was examined for two pairs of spatial frequencies: 1 and 4 cycles deg−1, and 1 and 8 cycles deg−1. The region of higher spatial frequency underwent contrast reversal at one of four rates: 0, 3.75, 7.5, or 15 Hz. The region of lower spatial frequency was equated with either the temporal frequency or the velocity of the grating of higher spatial frequency in three sets of conditions: one stationary condition, three in which temporal frequency was equated, and three in which velocity was equated. For the 1 and 4 cycles deg−1 pair, the region of lower spatial frequency tended to be seen as the background a higher percentage of the time. There were significant linear trends for the appearance as background of the region of lower spatial frequency with respect to the magnitude of the velocity difference between the two regions of the pattern. The faster the 1 cycle deg−1 grating moved with respect to the 4 cycles deg−1 grating, the higher the percentage of the time it was seen as the ground. The results for the 1 and 8 cycles deg−1 pair were in some cases unexpected in that the 8 cycles deg−1 grating was seen as the ground behind the 1 cycle deg−1 grating even though it was of a higher spatial frequency and moved at a slower velocity. The spatiotemporal tuning of the visual system is discussed.


Perception ◽  
1983 ◽  
Vol 12 (6) ◽  
pp. 663-682 ◽  
Author(s):  
Andrew Parker

Evidence is presented that two distinct effects are generated when a sine-wave grating is temporally modulated. These effects may differentiated on the grounds of different responses with different forms of temporal modulation (drift or phase reversal), different behaviour with changes of visual eccentricity and with changes of contrast. One effect is roughly equivalent to spatial-frequency doubling, as described by Kelly. The other is seen as a fractional increase in apparent spatial frequency ie 1.2 × or 1.4 × the original. Earlier papers are reviewed to lend support to these conclusions. The results obtained for spatial-frequency doubling are consistent with Kelly's model of a nonlinearity followed by a temporal integration. Spatial-frequency doubling emerges under conditions where a fractional increase in apparent spatial frequency would generally be expected but the particular spatiotemporal conditions are such that a breakdown in the motion-correspondence process may be suspected. Reasons for the existence of fractional shifts are not entirely clear, but it is argued that the similarity of the shifts induced by various manipulations (decreases of luminance, decreases of contrast, temporal modulation) are such that a general explanation must be sought, rather than one specific to temporal modulation alone.


Perception ◽  
1989 ◽  
Vol 18 (5) ◽  
pp. 627-637 ◽  
Author(s):  
Victor Klymenko ◽  
Naomi Weisstein

The figure – ground organization of an ambiguous bipartite pattern can be manipulated by altering the temporal-frequency content of the two regions of the pattern. Ambiguous patterns in which the two regions of each pattern contained sine-wave gratings of either 8, 4, 1, or 0.5 cycles deg−1 undergoing contrast reversal at rates of 0, 3.75, 7.5, or 15 Hz were tested for figure–ground organization under conditions of equated space-averaged and time-averaged luminance and perceived contrast. All combinations of temporal-frequency differences between the two regions were tested at each spatial frequency. The data are reported for two levels of temporal resolution (15 and 30 s). The pattern region with the relatively higher temporal frequency tended to be seen as the background a higher percentage of the viewing time. There were significant linear trends for the appearance as background of the region of higher temporal frequency with respect to the magnitude of the temporal-frequency difference between the two regions of each pattern for all spatial frequencies and data intervals except the final 15 s interval of the lowest (0.5 cycle deg−1) spatial-frequency condition.


Sign in / Sign up

Export Citation Format

Share Document