The Moon Tilt Illusion

Perception ◽  
1998 ◽  
Vol 27 (10) ◽  
pp. 1229-1232 ◽  
Author(s):  
Bernhard Schölkopf
Keyword(s):  
The Sun ◽  
The Moon ◽  

Besides the familiar moon illusion [eg Hershenson, 1989 The Moon Illusion (Hillsdale, NJ: Lawrence Erlbaum Associates)], wherein the moon appears bigger when it is close to the horizon, there is a less known illusion which causes the moon's illuminated side to appear turned away from the direction of the sun. An experiment documenting the effect is described, and a possible explanation is put forward.

Author(s):  
Zoltán Kovács ◽  
Zoltán Udvarnoki ◽  
Eszter Papp ◽  
Gábor Horváth

The moon illusion is a visual deception when people perceive the angular diameter of the Moon/Sun near the horizon larger than that of the one higher in the sky. Some theories have been proposed to explain this illusion, but not any is generally accepted. Although several psychophysical experiments have been performed to study different aspects of the moon illusion, their results have sometimes contradicted each other. Artists frequently display(ed) the Moon/Sun in their paintings. If the Moon/Sun appears near the horizon, its painted disc is often exaggeratedly large. How great is the magnitude of moon illusion of painters? How different are the size enlargements of depicted lunar/solar discs? To answer these questions, we measured these magnitudes on 100 paintings collected from the period of 1534–2017. In psychophysical experiments, we also investigated the moon illusion of 10 test persons who had to estimate the size of the lunar/solar disc on 100 paintings and 100 landscape photographs from which the Moon/Sun was retouched. Compared to the lunar/solar disc calculated from reference distances estimated by test persons in paintings, painters overestimated the Moon's size on average Q  = 2.1 ± 1.6 times, while the Sun was painted Q  = 1.8 ± 1.2 times larger than the real one, where Q  =  r painted / r real is the ratio of the radii of painted ( r painted ) and real ( r real ) Moons/Suns. In landscape photos, test persons overestimated the Moon's size Q  = 1.6 ± 0.4 times and the Sun was assumed Q  = 1.7 ± 0.5 times larger than in reality, where Q  =  r test / r real is the ratio of the radius r test estimated by the test persons and the real radius r real of Moons/Suns. The majority of the magnitude of moon illusion Q  = 1.6, 1.7, 1.8, 2.1, 2.8, 2.9 measured by us are larger than the Q -values 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 obtained in previous psychophysical experiments due to methodological differences.


Author(s):  
Brian Rogers ◽  
Stuart Anstis

When the sun is near the horizon and the moon is visible and higher in the sky, there is a compelling illusion that the sun is not in a direction perpendicular to the boundary between the lit and dark sides of the moon. This New Moon illusion has been observed and discussed previously but without a complete explanation. This chapter argues that both perceptual and cognitive factors contribute to the illusion and that it arises from the fact that the straight line joining the sun and the moon describes a great circle over the flattened dome of the sky. The New Moon illusion also raises the question of how we are able to judge the straightness of extended straight and parallel lines.


2018 ◽  
Vol 3 (2) ◽  
pp. 207-216 ◽  
Author(s):  
David Fisher ◽  
Lionel Sims

Claims first made over half a century ago that certain prehistoric monuments utilised high-precision alignments on the horizon risings and settings of the Sun and the Moon have recently resurfaced. While archaeoastronomy early on retreated from these claims, as a way to preserve the discipline in an academic boundary dispute, it did so without a rigorous examination of Thom’s concept of a “lunar standstill”. Gough’s uncritical resurrection of Thom’s usage of the term provides a long-overdue opportunity for the discipline to correct this slippage. Gough (2013), in keeping with Thom (1971), claims that certain standing stones and short stone rows point to distant horizon features which allow high-precision alignments on the risings and settings of the Sun and the Moon dating from about 1700 BC. To assist archaeoastronomy in breaking out of its interpretive rut and from “going round in circles” (Ruggles 2011), this paper evaluates the validity of this claim. Through computer modelling, the celestial mechanics of horizon alignments are here explored in their landscape context with a view to testing the very possibility of high-precision alignments to the lunar extremes. It is found that, due to the motion of the Moon on the horizon, only low-precision alignments are feasible, which would seem to indicate that the properties of lunar standstills could not have included high-precision markers for prehistoric megalith builders.


1982 ◽  
Vol 111 (3) ◽  
pp. 296-303 ◽  
Author(s):  
John C. Baird ◽  
Mark Wagner
Keyword(s):  
The Moon ◽  

1992 ◽  
Vol 75 (3) ◽  
pp. 827-831 ◽  
Author(s):  
Stanley Coren

The fact that the overestimation of the horizon moon is reduced when individuals bend over and view it through their legs has been used as support for theories of the moon illusion based upon angle of regard and vestibular inputs. Inversion of the visual scene, however, can also reduce the salience of depth cue, so illusion reduction might be consistent with size constancy explanations. A sample of 70 subjects viewed normal and inverted pictorial arrays. The moon illusion was reduced in the inverted arrays, suggesting that the “through the legs” reduction of the moon illusion may reflect the alteration in perceived depth associated with scene inversion rather than angle of regard or vestibular effects.


1972 ◽  
Vol 49 (6) ◽  
pp. 524-526
Author(s):  
T. M. NELSON ◽  
CAROL J. LADAN
Keyword(s):  
The Moon ◽  

Sign in / Sign up

Export Citation Format

Share Document