Newton polytopes and tropical geometry

2021 ◽  
Vol 76 (1) ◽  
pp. 91-175
Author(s):  
B Ya Kazarnovskii ◽  
A G Khovanskii ◽  
A I Esterov

2013 ◽  
Vol 23 (04n05) ◽  
pp. 397-423 ◽  
Author(s):  
IOANNIS Z. EMIRIS ◽  
VISSARION FISIKOPOULOS ◽  
CHRISTOS KONAXIS ◽  
LUIS PEÑARANDA

We design an algorithm to compute the Newton polytope of the resultant, known as resultant polytope, or its orthogonal projection along a given direction. The resultant is fundamental in algebraic elimination, optimization, and geometric modeling. Our algorithm exactly computes vertex- and halfspace-representations of the polytope using an oracle producing resultant vertices in a given direction, thus avoiding walking on the polytope whose dimension is α - n - 1, where the input consists of α points in ℤn. Our approach is output-sensitive as it makes one oracle call per vertex and per facet. It extends to any polytope whose oracle-based definition is advantageous, such as the secondary and discriminant polytopes. Our publicly available implementation uses the experimental CGAL package triangulation. Our method computes 5-, 6- and 7- dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs, and the Newton polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable. It is faster than tropical geometry software up to dimension 5 or 6. Hashing determinantal predicates accelerates execution up to 100 times. One variant computes inner and outer approximations with, respectively, 90% and 105% of the true volume, up to 25 times faster.



2021 ◽  
Vol 378 ◽  
pp. 107520
Author(s):  
Alex Abreu ◽  
Marco Pacini
Keyword(s):  


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Jan Draisma ◽  
Felipe Rincón

AbstractEvery tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.



Author(s):  
Tat Thang Nguyen ◽  
Takahiro Saito ◽  
Kiyoshi Takeuchi


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
James Drummond ◽  
Jack Foster ◽  
Ömer Gürdoğan ◽  
Chrysostomos Kalousios

Abstract We address the appearance of algebraic singularities in the symbol alphabet of scattering amplitudes in the context of planar $$ \mathcal{N} $$ N = 4 super Yang-Mills theory. We argue that connections between cluster algebras and tropical geometry provide a natural language for postulating a finite alphabet for scattering amplitudes beyond six and seven points where the corresponding Grassmannian cluster algebras are finite. As well as generating natural finite sets of letters, the tropical fans we discuss provide letters containing square roots. Remarkably, the minimal fan we consider provides all the square root letters recently discovered in an explicit two-loop eight-point NMHV calculation.



2021 ◽  
pp. 1-28
Author(s):  
Petros Maragos ◽  
Vasileios Charisopoulos ◽  
Emmanouil Theodosis


2011 ◽  
Vol 148 (1) ◽  
pp. 269-294 ◽  
Author(s):  
Eric Katz ◽  
Alan Stapledon

AbstractWe construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.



Author(s):  
Martha Bernal Guillén ◽  
Daniel Corey ◽  
Maria Donten-Bury ◽  
Naoki Fujita ◽  
Georg Merz
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document