polyhedral complex
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2022 ◽  
Vol 183 (3-4) ◽  
pp. 169-201
Author(s):  
Xavier Allamigeon ◽  
Marin Boyet ◽  
Stéphane Gaubert

We study timed Petri nets, with preselection and priority routing. We represent the behavior of these systems by piecewise affine dynamical systems. We use tools from the theory of nonexpansive mappings to analyze these systems. We establish an equivalence theorem between priority-free fluid timed Petri nets and semi-Markov decision processes, from which we derive the convergence to a periodic regime and the polynomial-time computability of the throughput. More generally, we develop an approach inspired by tropical geometry, characterizing the congestion phases as the cells of a polyhedral complex. We illustrate these results by a current application to the performance evaluation of emergency call centers in the Paris area. We show that priorities can lead to a paradoxical behavior: in certain regimes, the throughput of the most prioritary task may not be an increasing function of the resources.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Jan Draisma ◽  
Felipe Rincón

AbstractEvery tropical ideal in the sense of Maclagan–Rincón has an associated tropical variety, a finite polyhedral complex equipped with positive integral weights on its maximal cells. This leads to the realisability question, ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this manner. Using work of Las Vergnas on the non-existence of tensor products of matroids, we prove that there is no tropical ideal whose variety is the Bergman fan of the direct sum of the Vámos matroid and the uniform matroid of rank two on three elements and in which all maximal cones have weight one.


2020 ◽  
Vol 64 (3) ◽  
pp. 759-775
Author(s):  
Herbert Edelsbrunner ◽  
Katharina Ölsböck

Abstract Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.


2018 ◽  
Vol 29 (2) ◽  
pp. 1356-1368 ◽  
Author(s):  
Mounir Nisse ◽  
Timur Sadykov

2018 ◽  
Vol 154 (3) ◽  
pp. 640-670 ◽  
Author(s):  
Diane Maclagan ◽  
Felipe Rincón

We introduce and study a special class of ideals, called tropical ideals, in the semiring of tropical polynomials, with the goal of developing a useful and solid algebraic foundation for tropical geometry. The class of tropical ideals strictly includes the tropicalizations of classical ideals, and allows us to define subschemes of tropical toric varieties, generalizing Giansiracusa and Giansiracusa [Equations of tropical varieties, Duke Math. J. 165 (2016), 3379–3433]. We investigate some of the basic structure of tropical ideals, and show that they satisfy many desirable properties that mimic the classical setup. In particular, every tropical ideal has an associated variety, which we prove is always a finite polyhedral complex. In addition we show that tropical ideals satisfy the ascending chain condition, even though they are typically not finitely generated, and also the weak Nullstellensatz.


2017 ◽  
Vol 81 (2) ◽  
pp. 329-358
Author(s):  
B Ya Kazarnovskii
Keyword(s):  

2014 ◽  
Vol 17 (01) ◽  
pp. 1350045 ◽  
Author(s):  
Arne Buchholz ◽  
Hannah Markwig

We define the tropical moduli space of covers of a tropical line in the plane as weighted abstract polyhedral complex, and the tropical branch map recording the images of the simple ramifications. Our main result is the invariance of the degree of the branch map, which enables us to give a tropical intersection-theoretic definition of tropical triple Hurwitz numbers. We show that our intersection-theoretic definition coincides with the one given in [B. Bertrand, E. Brugallé and G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011) 157–171] where a Correspondence Theorem for Hurwitz numbers is proved. Thus we provide a tropical intersection-theoretic justification for the multiplicities with which a tropical cover has to be counted. Our method of proof is to establish a local duality between our tropical moduli spaces and certain moduli spaces of relative stable maps to ℙ1.


2013 ◽  
Vol 05 (03) ◽  
pp. 297-331 ◽  
Author(s):  
URS LANG

Injective metric spaces, or absolute 1-Lipschitz retracts, share a number of properties with CAT(0) spaces. In the '60s Isbell showed that every metric space X has an injective hull E (X). Here it is proved that if X is the vertex set of a connected locally finite graph with a uniform stability property of intervals, then E (X) is a locally finite polyhedral complex with finitely many isometry types of n-cells, isometric to polytopes in [Formula: see text], for each n. This applies to a class of finitely generated groups Γ, including all word hyperbolic groups and abelian groups, among others. Then Γ acts properly on E(Γ) by cellular isometries, and the first barycentric subdivision of E(Γ) is a model for the classifying space [Formula: see text] for proper actions. If Γ is hyperbolic, E(Γ) is finite dimensional and the action is cocompact. In particular, every hyperbolic group acts properly and cocompactly on a space of non-positive curvature in a weak (but non-coarse) sense.


2013 ◽  
Vol 23 (02) ◽  
pp. 75-92 ◽  
Author(s):  
ZACHARY ABEL ◽  
ERIK D. DEMAINE ◽  
MARTIN L. DEMAINE ◽  
SARAH EISENSTAT ◽  
JAYSON LYNCH ◽  
...  

We consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, it is known that such reconfiguration is not always possible for linear (nonequilateral) trees and for (nonlinear) equilateral trees. Second, under instantaneous folding motions, we show that an equilateral plane graph has a noncrossing linear folded state if and only if it is bipartite. Furthermore, we show that the equilateral constraint is necessary for this result, by proving that it is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear folded state. Equivalently, we show strong NP-completeness of deciding whether an abstract metric polyhedral complex with one central vertex has a noncrossing flat folded state. By contrast, the analogous problem for a polyhedral manifold with one central vertex (single-vertex origami) is only weakly NP-complete.


2011 ◽  
Vol 46 (4) ◽  
pp. 789-798 ◽  
Author(s):  
José Ignacio Burgos Gil ◽  
Martín Sombra

Sign in / Sign up

Export Citation Format

Share Document