newton polytope
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
P. Breiding ◽  
F. Sottile ◽  
J. Woodcock

AbstractWe initiate a study of the Euclidean distance degree in the context of sparse polynomials. Specifically, we consider a hypersurface $$f=0$$ f = 0 defined by a polynomial f that is general given its support, such that the support contains the origin. We show that the Euclidean distance degree of $$f=0$$ f = 0 equals the mixed volume of the Newton polytopes of the associated Lagrange multiplier equations. We discuss the implication of our result for computational complexity and give a formula for the Euclidean distance degree when the Newton polytope is a rectangular parallelepiped.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Dmitry Noshchenko

Abstract Algebraic Nahm equations, considered in the paper, are polynomial equations, governing the q → 1 limit of the q-hypergeometric Nahm sums. They make an appearance in various fields: hyperbolic geometry, knot theory, quiver representation theory, topological strings and conformal field theory. In this paper we focus primarily on Nahm sums and Nahm equations that arise in relation with symmetric quivers. For a large class of them, we prove that quiver A-polynomials — specialized resultants of the Nahm equations, are tempered (the so-called K-theoretic condition). This implies that they are quantizable. Moreover, we find that their face polynomials obey a remarkable combinatorial pattern. We use the machinery of initial forms and mixed polyhedral decompositions to investigate the edges of the Newton polytope. We show that this condition holds for the diagonal quivers with adjacency matrix C = diag(α, α, . . . , α), α ≥ 2, and provide several checks for non-diagonal quivers. Our conjecture is that the K-theoretic condition holds for all symmetric quivers.


2021 ◽  
Vol 85 (3) ◽  
Author(s):  
Leonid Grigor'evich Makar-Limanov
Keyword(s):  

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
B. Ananthanarayan ◽  
Abhijit B. Das ◽  
Ratan Sarkar

AbstractThe ASPIRE program, which is based on the Landau singularities and the method of Power geometry to unveil the regions required for the evaluation of a given Feynman diagram asymptotically in a given limit, also allows for the evaluation of scaling coming from the top facets. In this work, we relate the scaling having equal components of the top facets of the Newton polytope to the maximal cut of given Feynman integrals. We have therefore connected two independent approaches to the analysis of Feynman diagrams.


2019 ◽  
Vol 2019 (755) ◽  
pp. 103-126
Author(s):  
César Martínez

AbstractWe present sharp bounds on the number of maximal torsion cosets in a subvariety of the complex algebraic torus {\mathbb{G}_{\mathrm{m}}^{n}}. Our first main result gives a bound in terms of the degree of the defining polynomials. We also give a bound for the number of isolated torsion point, that is maximal torsion cosets of dimension 0, in terms of the volume of the Newton polytope of the defining polynomials. This result proves the conjectures of Ruppert and of Aliev and Smyth on the number of isolated torsion points of a hypersurface. These conjectures bound this number in terms of the multidegree and the volume of the Newton polytope of a polynomial defining the hypersurface, respectively.


2017 ◽  
Vol 153 (4) ◽  
pp. 867-888 ◽  
Author(s):  
Gal Binyamini

We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Adam Kalman

International audience We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type $A$ cluster variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope via an isomorphism with the lattice of elementary subgraphs of the associated snake graph. Nous étudions polytopes de Newton des variables amassées dans les algèbres amassées de type A, dont les variables sont indexés par les diagonales et les côtés d’un polygone. Nos principaux résultats comprennent une description explicite de l’enveloppe affine et facettes du polytope de Newton du développement de Laurent de toutes variables amassées. En particulier, nous montrons que tout monôme Laurent dans un développement de Laurent de variable amassée de type A correspond à un sommet du polytope de Newton. Nous décrivons aussi le treillis des facesde chaque polytope de Newton via un isomorphisme avec le treillis des sous-graphes élémentaires du “snake graph” qui est associé.


2013 ◽  
Vol 23 (04n05) ◽  
pp. 397-423 ◽  
Author(s):  
IOANNIS Z. EMIRIS ◽  
VISSARION FISIKOPOULOS ◽  
CHRISTOS KONAXIS ◽  
LUIS PEÑARANDA

We design an algorithm to compute the Newton polytope of the resultant, known as resultant polytope, or its orthogonal projection along a given direction. The resultant is fundamental in algebraic elimination, optimization, and geometric modeling. Our algorithm exactly computes vertex- and halfspace-representations of the polytope using an oracle producing resultant vertices in a given direction, thus avoiding walking on the polytope whose dimension is α - n - 1, where the input consists of α points in ℤn. Our approach is output-sensitive as it makes one oracle call per vertex and per facet. It extends to any polytope whose oracle-based definition is advantageous, such as the secondary and discriminant polytopes. Our publicly available implementation uses the experimental CGAL package triangulation. Our method computes 5-, 6- and 7- dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs, and the Newton polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable. It is faster than tropical geometry software up to dimension 5 or 6. Hashing determinantal predicates accelerates execution up to 100 times. One variant computes inner and outer approximations with, respectively, 90% and 105% of the true volume, up to 25 times faster.


2013 ◽  
Vol 29 (13) ◽  
pp. i300-i307 ◽  
Author(s):  
E. Forouzmand ◽  
H. Chitsaz

Sign in / Sign up

Export Citation Format

Share Document