A REVIEW OF THE U.S. TIGHT GAS INDUSTRY FROM THE PERSPECTIVE OF SELECTED AUSTRALIAN AND NEW ZEALAND BASINS

1995 ◽  
Vol 35 (1) ◽  
pp. 692
Author(s):  
D.G. Crosby ◽  
D. Tamhane ◽  
Z. Yang ◽  
A.K. Khurana ◽  
V.A. Kuuskraa

The recovery of natural gas from low permeability sandstones in the US has been made commercially possible due, to a large degree, to advanced technologies. The US currently produces 2 TCF annually from tight gas sandstone reservoirs. Large efforts have been directed towards identifying and developing the more productive basinal areas, or 'sweet spots9 of tight gas reservoirs. The identification of natural fractures prior to drilling, through the use of remote imagery in combination with established methods such as magnetic and gravity mapping, is currently being pioneered. Reduction in well-bore stimulation costs through development and application of advanced hydraulic fracture technology has improved the economics of tight gas production. The use of 3D fracture models in combination with realistic insitu stress profiles, appropriate proppants and effective quality controls have greatly increased well productivities through smaller, more efficient fracture treatments. Treatments have been successfully designed to avoid damage to natural fractures.Large tight gas sandstone resources similarly exist in the Cooper and Perth Basins of Australia and in the Taranaki Basin of New Zealand, although these resources remain largely untapped. To date, less than 50 BCF has been produced from Australian and New Zealand tight sandstones, largely from the Tirrawarra Sandstone and Patchawarra Formation of the Cooper Basin and the Ngatoro/McKee Formations of the Taranaki Basin. These formations compare well however, in terms of depositional environments with prolific US tight gas producing formations. They appear to be well placed to take advantage of the experiences and technologies gained by their US counterparts as well as through site specific adaptation of such technologies and the development of new technologies.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2726-2737

Unconventional gas reservoirs are now the targets for meeting the demand for gas. These reservoirs are at the depth of more than 10,000 ft (even over 15000 depth as well) and are difficult to be exploited by conventional methods. For the last decades hydraulic fracturing has become the tool to develop these resources. Mathematical models (2D and pseudo-3D) have been developed for fracture geometry, which should be realistically created at the depth by surface controllable treatment parameters. If the reservoir rock is sandstone, then proppant fracturing is suitable and if the rock is carbonates, then acid fracturing is applicable. In both cases, proper design of controllable treatment parameters within constraints is essential. This needs proper optimization model which gives real controllable parametric vales. The model needs the most important analyses from geomechanical study and linear elastic fracture mechanics of rock containing unconventional gas so that fracture geometry makes maximum contact with the reservoirs for maximum recovery. Currently available software may lack proper optimization scheme containing geomechanical stress model, fracture geometry, natural fracture interactions, real field constraints and proper reservoir engineering model of unconventional gas resources, that is, production model from hydraulically fractured well (vertical and horizontal). An optimization algorithm has been developed to integrate all the modules, as mentioned above, controllable parameters, field constraints and production model with an objective function of maximum production (with or without minimization of treatment cost). Optimization is basically developed based on Direct Search Genetic and Polytope algorithm, which can handle dual objective function, non-differentiable equations, discontinuity and non-linearity. A dual objective function will meet operator’s economic requirements and investigate conflict between two objectives. The integrated model can be applied to a vertical or horizontal well in tight gas or ultra-tight shale gas deeper than over 10,000 ft. A simulation (with industrial simulators) was conducted to investigate and analyse fracture propagation behavior, under varying parameters with respect to the fracture design process, for tight gas reservoirs. Results indicate that hydraulic fracture propagation behavior is not uninhibited in deep reservoirs as some may believe that minor variations of variables such as in-situ stress, fluid properties etc. are often detrimental to fracture propagation in some conditions. Application of this model to a hypothetical tight and ultra-tight unconventional gas formations indicates a significant gas production at lower treatment cost; whereas the resources do not flow without any stimulation (hydraulic fracturing).


2007 ◽  
Vol 77 (12) ◽  
pp. 1003-1025 ◽  
Author(s):  
K. E. Higgs ◽  
H. Zwingmann ◽  
A. G. Reyes ◽  
R. H. Funnell

2013 ◽  
Vol 28 (01) ◽  
pp. 8-25
Author(s):  
Patricia H. Cuba ◽  
Jennifer Miskimins ◽  
Donna S. Anderson ◽  
Mary M. Carr

2010 ◽  
Vol 50 (1) ◽  
pp. 559
Author(s):  
Hassan Bahrami ◽  
M Reza Rezaee ◽  
Vamegh Rasouli ◽  
Armin Hosseinian

Tight gas reservoirs normally have production problems due to very low matrix permeability and significant damage during well drilling, completion, stimulation and production. Therefore they might not flow gas to surface at optimum rates without advanced production improvement techniques. After well stimulation and fracturing operations, invaded liquids such as filtrate will flow from the reservoir into the wellbore, as gas is produced during well cleanup. In addition, there might be production of condensate with gas. The produced liquids when loaded and re-circulated downhole in wellbores, can significantly reduce the gas production rate and well productivity in tight gas formations. This paper presents assessments of tight gas reservoir productivity issues related to liquid loading in wellbores using numerical simulation of multiphase flow in deviated and horizontal wells. A field example of production logging in a horizontal well is used to verify reliability of the numerical simulation model outputs. Well production performance modelling is also performed to quantitatively evaluate water loading in a typical tight gas well, and test the water unloading techniques that can improve the well productivity. The results indicate the effect of downhole liquid loading on well productivity in tight gas reservoirs. It also shows how well cleanup is sped up with the improved well productivity when downhole circulating liquids are lifted using the proposed methods.


2021 ◽  
pp. 1-47
Author(s):  
Chao Li ◽  
Peng Hu ◽  
Jing Ba ◽  
José M. Carcione ◽  
Tianwen Hu ◽  
...  

Tight-gas sandstone reservoirs of the Ordos Basin of China are characterized by high rock-fragment content, dissimilar pore types and a random distribution of fluids, leading to strong local heterogeneity. We model the seismic properties of these sandstones with the double-double porosity (DDP) theory, which considers water saturation, porosity and the frame characteristics. A generalized seismic wavelet is used to fit the real wavelet and the peak frequency-shift method is combined with the generalized S-transform to estimate attenuation. Then, we establish rock-physics templates (RPTs) based on P-wave attenuation and impedance. We use the log data and related seismic traces to calibrate the RPTs and generate a 3D volume of rock-physics attributes for the quantitative prediction of saturation and porosity. The predicted values are in good agreement with the actual gas production reports, indicating that the method can be effectively applied to heterogeneous tight-gas sandstone reservoirs.


2019 ◽  
Vol 22 (13) ◽  
pp. 1667-1683
Author(s):  
Fei Mo ◽  
Zhimin Du ◽  
Xiaolong Peng ◽  
Baosheng Liang ◽  
Yong Tang ◽  
...  

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Renyi Cao ◽  
Liyou Ye ◽  
Qihong Lei ◽  
Xinhua Chen ◽  
Y. Zee Ma ◽  
...  

Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG) and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.


Sign in / Sign up

Export Citation Format

Share Document