Simulation of Fracturing-Induced Formation Damage and Gas Production From Fractured Wells in Tight Gas Reservoirs

2013 ◽  
Vol 28 (03) ◽  
pp. 246-258 ◽  
Author(s):  
Didier Yu Ding ◽  
Hoel Langouët ◽  
Laurent Jeannin
2008 ◽  
Author(s):  
Brigitte Bazin ◽  
Samir Bekri ◽  
Olga Vizika ◽  
Benjamin Herzhaft ◽  
Eric Aubry

2020 ◽  
Vol 84 ◽  
pp. 103608 ◽  
Author(s):  
Xingyuan Liang ◽  
Fujian Zhou ◽  
Tianbo Liang ◽  
Caizhong Wang ◽  
Yuan Li

2010 ◽  
Vol 50 (1) ◽  
pp. 559
Author(s):  
Hassan Bahrami ◽  
M Reza Rezaee ◽  
Vamegh Rasouli ◽  
Armin Hosseinian

Tight gas reservoirs normally have production problems due to very low matrix permeability and significant damage during well drilling, completion, stimulation and production. Therefore they might not flow gas to surface at optimum rates without advanced production improvement techniques. After well stimulation and fracturing operations, invaded liquids such as filtrate will flow from the reservoir into the wellbore, as gas is produced during well cleanup. In addition, there might be production of condensate with gas. The produced liquids when loaded and re-circulated downhole in wellbores, can significantly reduce the gas production rate and well productivity in tight gas formations. This paper presents assessments of tight gas reservoir productivity issues related to liquid loading in wellbores using numerical simulation of multiphase flow in deviated and horizontal wells. A field example of production logging in a horizontal well is used to verify reliability of the numerical simulation model outputs. Well production performance modelling is also performed to quantitatively evaluate water loading in a typical tight gas well, and test the water unloading techniques that can improve the well productivity. The results indicate the effect of downhole liquid loading on well productivity in tight gas reservoirs. It also shows how well cleanup is sped up with the improved well productivity when downhole circulating liquids are lifted using the proposed methods.


2019 ◽  
Vol 22 (13) ◽  
pp. 1667-1683
Author(s):  
Fei Mo ◽  
Zhimin Du ◽  
Xiaolong Peng ◽  
Baosheng Liang ◽  
Yong Tang ◽  
...  

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Renyi Cao ◽  
Liyou Ye ◽  
Qihong Lei ◽  
Xinhua Chen ◽  
Y. Zee Ma ◽  
...  

Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG) and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 969-976 ◽  
Author(s):  
Brigitte Bazin ◽  
Samir Bekri ◽  
Olga Vizika ◽  
Benjamin Herzhaft ◽  
Eric Aubry

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yue Peng ◽  
Tao Li ◽  
Yuxue Zhang ◽  
Yongjie Han ◽  
Dan Wu ◽  
...  

Abstract Multifractured horizontal wells are widely used in the development of tight gas reservoirs to improve the gas production and the ultimate reservoir recovery. Based on the heterogeneity characteristics of the tight gas reservoir, the homogeneous scheme and four typical heterogeneous schemes were established to simulate the production of a multifractured horizontal well. The seepage characteristics and production performance of different schemes were compared and analyzed in detail by the analysis of streamline distribution, pressure distribution, and production data. In addition, the effects of reservoir permeability level, length of horizontal well, and fracture half-length on the gas reservoir recovery were discussed. Results show that the reservoir permeability of the unfractured areas, which are located at both ends of the multifractured horizontal well, determines the seepage ability of the reservoir matrix, showing a significant impact on the long-term gas production. High reservoir permeability level, long horizontal well length, and long fracture half-length can mitigate the negative influence of heterogeneity on the gas production. Our research can provide some guidance for the layout of multifractured horizontal wells and fracturing design in heterogeneous tight gas reservoirs.


2020 ◽  
Vol 38 (6) ◽  
pp. 2631-2648
Author(s):  
Zhaoyi Liu ◽  
Ligang Zhang ◽  
GR Liu ◽  
Wei Li ◽  
Shibin Li ◽  
...  

In this work, a series of intensive laboratory tests are conducted to measure the material constituents, mechanical properties, and to examine macro-micro-failure modes of various types of rocks from tight gas reservoirs in the Da Qing oilfield in China. A set of key parameters are experimentally determined, including porosity, mineralogical compositions, microstructure, Young’s modulus, Poisson’s ratio, triaxial compressive strength, as well as macro- and micro-morphology failure modes. The relationships of these parameters are systematically analyzed, and the effects of the material constituents and microstructure characteristics such as cementation type, porosity, and mineral composition on rock mechanical properties are revealed as well as the patterns of micro- and macro-failures in types of rocks are investigated. The result shows that the micro-failure mainly exhibits features of transgranular and intergranular porous polymer fracture, and the macro-failure modes are mainly three types: shear-dominated, mixed shear–tensile and mixed tensile–shear. The mixed tensile–shear failure has mainly tensile fractures with branch fractures crossing each other, which forms a complex system fracture network. These findings are of importance for “sweet pot” evaluations, wellbore stability analysis, and hydraulic fracturing design for oil and gas production in tight gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document