scholarly journals Joint inversion of P-, and S-wave travel times for characterisation of anisotropic materials using laser Doppler interferometry measurements

2015 ◽  
Vol 2015 (1) ◽  
pp. 1-4
Author(s):  
Andrej Bóna ◽  
Boris Gurevich ◽  
Roman Pevzner ◽  
Maxim Lebedev ◽  
Mahyar Madadi
1969 ◽  
Vol 59 (2) ◽  
pp. 755-769
Author(s):  
K. L. Kaila

abstract A new analytical method for the determination of velocity at the hypocenter of a deep earthquake has been developed making use of P- and S-wave travel times. Unlike Gutenberg's method which is graphical in nature, the present method makes use of the least square technique and as such it yields more quantitative estimates of the velocities at depth. The essential features of this method are the determination from the travel times of a deep-focus earthquake the lower and upper limits Δ1 and Δ2 respectively of the epicentral distance between which p = (dT/dΔ) in the neighborhood of inflection point can be considered stationary so that the travel-time curve there can be approximated to a straight line T = pΔ + a. From p = (1/v*) determined from the straight line least-square fit made on the travel-time observation points between Δ1 and Δ2 for various focal depths, upper-mantle velocity structure can be obtained by making use of the well known relation v = v*(r0 − h)/r0, h being the focal depth of the earthquake, r0 the radius of the Earth, v* the apparent velocity at the point of inflection and v the true velocity at that depth. This method not only gives an accurate estimate of p, at the same time it also yields quite accurate value of a which is a function of focal depth. Calibration curves can be drawn between a and the focal depth h for various regions of the Earth where deep focus earthquakes occur, and these calibration curves can then be used with advantage to determine the focal depths of deep earthquakes in those areas.


2021 ◽  
Author(s):  
Francesco Rappisi ◽  
Brandon Paul Vanderbeek ◽  
Manuele Faccenda

<p>Teleseismic travel-time tomography remains one of the most popular methods for obtaining images of Earth's upper mantle. While teleseismic shear phases, most notably SKS, are commonly used to infer the anisotropic properties of the upper mantle, anisotropic structure is often ignored in the construction of body wave shear velocity models. Numerous researchers have demonstrated that neglecting anisotropy in P-wave tomography can introduce significant imaging artefacts that could lead to spurious interpretations. Less attention has been given to the effect of anisotropy on S-wave tomography partly because, unlike P-waves, there is not a ray-based methodology for modelling S-wave travel-times through anisotropic media. Here we evaluate the effect that the isotropic approximation has on tomographic images of the subsurface when shear waves are affected by realistic mantle anisotropy patterns. We use SPECFEM to model the teleseismic shear wavefield through a geodynamic model of subduction that includes elastic anisotropy predicted from micromechanical models of polymineralic aggregates advected through the simulated flow field. We explore how the chosen coordinates system in which S-wave arrival times are measured (e.g., radial versus transverse) affects the imaging results. In all cases, the isotropic imaging assumption leads to numerous artefacts in the recovered velocity models that could result in misguided inferences regarding mantle dynamics. We find that when S-wave travel-times are measured in the direction of polarisation, the apparent anisotropic shear velocity can be approximated using sinusoidal functions of period pi and two-pi. This observation allows us to use ray-based methods to predict S-wave travel-times through anisotropic models. We show that this parameterisation can be used to invert S-wave travel-times for the orientation and strength of anisotropy in a manner similar to anisotropic P-wave travel-time tomography. In doing so, the magnitude of imaging artefacts in the shear velocity models is greatly reduced.</p>


2020 ◽  
Vol 58 (9) ◽  
pp. 6504-6511
Author(s):  
Jingjing Zong ◽  
Yukai Wo ◽  
Hua-Wei Zhou ◽  
Nikolay Dyaur
Keyword(s):  
S Wave ◽  

1968 ◽  
Vol 58 (6) ◽  
pp. 1879-1897
Author(s):  
K. L. Kaila ◽  
P. R. Reddy ◽  
Hari Narain

ABSTRACT P-wave travel times of 39 shallow earthquakes and three nuclear explosions with epicenters in the North in Himalayas, Tibet, China and USSR as recorded in Indian observatories have been analyzed statistically by the method of weighting observations. The travel times from Δ = 2° to 50° can be represented by four straight line segments indicating abrupt velocity changes around 19°, 22° and 33° respectively. The P-wave velocity at the top of the mantle has been found to be 8.31 ± 0.02 km/sec. Inferred upper mantle structure reveals three velocity discontinuities in the upper mantle at depths (below the crust) of 380 ± 20, 580 ± 50 and 1000 ± 120 km with velocities below the discontinuities as 9.47 ± 0.06, 10.15 ± 0.07 and 11.40 ± 0.08 km/sec respectively. The J-B residuals up to Δ = 19° are mostly negative varying from 1 to 10 seconds with a dependence on Δ values indicating a different upper mantle velocity in the Himalayan region as compared to that used by Jeffreys-Bullen in their tables (1940). Between 19° to 33° there is a reasonably good agreement between the J-B curve and the observation points. From Δ = 33° to 50° the J-B residuals are mostly positive with an average excess value of about 4 sec.


1969 ◽  
Vol 59 (3) ◽  
pp. 1201-1212
Author(s):  
David E. James ◽  
I. Selwyn Sacks ◽  
Eduardo Lazo L. ◽  
Pablo Aparicio G.

abstract Mathematical instability in four-parameter least squares hypocenter solutions arises primarily from the fact that the four computed variables—origin time (T0), focal depth (h), latitude (θ), and longitude (λ)—are not strictly independent. Specifically, T0 exhibits a non-independent relationship with the geometric parameters. For small networks (< 10–15 stations), the lack of independence between T0 and the other variables results in unstable least-squares solutions. This instability is manifest most clearly by the fact that different station subsets of the observational network produce significantly different solutions for the same earthquake. The instability can be eliminated by computing T0 independently for each station using the formula ( T 0 ) i = ( T p ) i − V k ( T s − p ) i V p , where Tp = P-wave arrival time, Vk = S-P velocity, Vp = P-wave velocity, and Ts-p = time interval between P and S arrivals. An average value of T0 can be obtained from the individually calculated origin times and the P-wave travel times calculated. The variables ϕ, λ and z are then computed by the usual least-squares procedure using P-wave travel times only. The method is iterative and an average T0 is recalculated in the course of each iteration. Fundamental properties of travel times within the Earth impose definite limitations upon the accuracy of the locations. Low values of the derivative dTp/dh at epicentral distances of a few degrees introduce a large uncertainty in focal depth, particularly for shallow (0–60 km) earthquakes. There is normally little error in epicenter, however, even for solutions in which depth is poorly determined. The dimensions and geometric configuration of the network in relation to the epicenter and the proximity of the epicenter to any one station are controlling factors in predicting the minimum uncertainty for any given hypocenter solution.


1958 ◽  
Vol 48 (4) ◽  
pp. 377-398
Author(s):  
Dean S. Carder ◽  
Leslie F. Bailey

Abstract A large number of seismograph records from nuclear explosions in the Nevada and Pacific Island proving grounds have been collected and analyzed. The Nevada explosions were well recorded to distances of 6°.5 (450 mi.) and weakly recorded as far as 17°.5, and under favorable circumstances as far as 34°. The Pacific explosions had world-wide recording except that regional data were necessarily meager. The Nevada data confirm that the crustal thickness in the area is about 35 km., with associations of 6.1 km/sec. speeds in the crust and 8.0 to 8.2 km/sec. speeds beneath it. They indicate that there is no uniform layering in the crust, and that if higher-speed media do exist, they are not consistent; also, that the crust between the proving grounds and central California shows a thickening probably as high as 70 or 75 km., and that this thickened portion may extend beneath the Owens Valley. The data also point to a discontinuity at postulated depths of 160 to 185 km. Pacific travel times out to 14° are from 4 to 8 sec. earlier than similar continental data partly because of a thinner crust, 17 km. or less, under the atolls and partly because speeds in the top of the mantle are more nearly 8.15 km/sec. than 8.0 km/sec. More distant points, at 17°.5 and 18°.5, indicate slower travel times—about 8.1 km/sec. A fairly sharp discontinuity at 19° in the travel-time data is indicated. Travel times from Pacific sources to North America follow closely Jeffreys-Bullen 1948 and Gutenberg 1953 travel-time curves for surface foci except they are about 2 sec. earlier on the continent, and Arctic and Pacific basin data are about 2 sec. still earlier. The core reflection PcP shows a strong variation in amplitude with slight changes in distance at two points where sufficient data were available.


Sign in / Sign up

Export Citation Format

Share Document