scholarly journals Inhibition of Transport of Indole-3-Acetic Acid in the Etiolated Hypocotyl of Phaseolus Vulgaris L.

1956 ◽  
Vol 9 (4) ◽  
pp. 528 ◽  
Author(s):  
JA Zwar ◽  
AHGC Rijven

The effect of a number of auxins and auxin analogues on the basipetal transport of illdole-3-aeotie acid (IAA) in 5-mm segments of hypocotyls of i)-day-old etiolated Phaseolus vulgari8 L. seedlings has been investigated.

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 64-68 ◽  
Author(s):  
T. D. Taylor ◽  
G. F. Warren

Uptake and movement of various herbicides and auxins by bean (Phaseolus vulgarisL.) petiole sections were studied. Isopropylm-chlorocarbanilate (chlorpropham) was the most mobile of the compunds studied, followed in order of decreasing mobility by: indole-3-acetic acid (IAA), 3-amino-s-triazole (amitrole), (2,4-dichlorophenoxy)acetic acid (2,4-D), 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron), and 3-amino-2,5-dichlorobenzoic acid (amiben). Amiben immobilization may have been due to glucoside formation in the tissues. IAA was rapidly transported through basipetally but not acropetally oriented tissue. Tissue orientation had little effect on the movement of the other compounds. Mobility of the compounds studied, in general, appears to be a function of the amount of uncomplexed parent chemical. Retention is likely the result of conjugation with products in the cells or of physical binding in the cells.


1983 ◽  
Vol 61 (5) ◽  
pp. 1548-1549 ◽  
Author(s):  
Bruce E. Haissig

Rooting trials with bean (Phaseolus vulgaris cv. Top Crop L.) tested the effects of phenyl tryptophyl ether (PTRE) in comparison with tryptophol (TR, indole-3-ethanol), indole-3-acetic acid (IAA), and no treatment. PTRE was synthesized from tryptophol and phenol. Results indicated that IAA treatment enhanced primordium development significantly more than any other treatment that was tested. Effects of TR and PTRE treatment on primordium development were about equal. Results suggested that PTRE is not an auxin or is only a weak auxin in comparison with IAA.


Planta ◽  
1988 ◽  
Vol 175 (4) ◽  
pp. 532-538 ◽  
Author(s):  
R. Atzorn ◽  
A. Crozier ◽  
C. T. Wheeler ◽  
G. Sandberg

2014 ◽  
Vol 60 (1-2) ◽  
pp. 51-66
Author(s):  
Jacek A. Adamczyk

The acropetal effects of auxin on elongation of axillary buds and on modulation of the wave-like pattern of basipetal efflux of natural auxin to agar from <i>Acer pseudoplatanus</i> L. shoots were studied. When synthetic IAA was applied to cut surfaces of one of two branches the elongation growth of buds situated on the opposite branch was retarded, suggesting regulation independent of the direct action of the molecules of the applied IAA. Oscillations in basipetal transport of natural auxin along the stem segments were observed corroborating the results of other authors using different tree species. Apical application of synthetic IAA for 1 hour to the lateral branch caused a phase shift of the wave-like pattern of basipetal efflux of natural auxin, when the stem segment above the treated branch was sectioned. The same effect was observed evoked by the laterally growing branch which is interpreted as an effect of natural auxin produced by the actively growing shoot. These modulations could be propagated acropetally at a rate excluding direct action of auxin molecules at the sites of measurement. The results seem to corroborate the hypothesis suggesting that auxin is involved in acropetal regulation of shoot apex growth through its effect upon modulation of the vectorial field which arises when the auxin-waves translocate in cambium.


Sign in / Sign up

Export Citation Format

Share Document