Movement of Several Herbicides Through Excised Plant Tissue

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 64-68 ◽  
Author(s):  
T. D. Taylor ◽  
G. F. Warren

Uptake and movement of various herbicides and auxins by bean (Phaseolus vulgarisL.) petiole sections were studied. Isopropylm-chlorocarbanilate (chlorpropham) was the most mobile of the compunds studied, followed in order of decreasing mobility by: indole-3-acetic acid (IAA), 3-amino-s-triazole (amitrole), (2,4-dichlorophenoxy)acetic acid (2,4-D), 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron), and 3-amino-2,5-dichlorobenzoic acid (amiben). Amiben immobilization may have been due to glucoside formation in the tissues. IAA was rapidly transported through basipetally but not acropetally oriented tissue. Tissue orientation had little effect on the movement of the other compounds. Mobility of the compounds studied, in general, appears to be a function of the amount of uncomplexed parent chemical. Retention is likely the result of conjugation with products in the cells or of physical binding in the cells.

Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 68-74 ◽  
Author(s):  
T. D. Taylor ◽  
G. F. Warren

Pretreatment of bean (Phaseolus vulgarisL.) petiole sections with one of several metabolic inhibitors greatly stimulated the movement of 3-amino-2,5-dichlorobenzoic acid (amiben) and (2,4-dichlorophenoxy)acetic acid (2,4-D). However, the movement of 3-amino-s-triazole (amitrole), 3-(3,4-dichlorophenyl)-1-methylurea (linuron), and isopropylm-chlorocarbanilate (chlorpropham) was stimulated only slightly or not at all. The basipetal movement of indole-3-acetic acid (IAA) was inhibited by concentrations of 2-sec-butyl-4,6-dinitrophenol (dinoseb) which stimulated respiration (5 × 10−7M to 5 × 10−8M). Acropetal movement was stimulated by dinoseb concentrations greater than 10−5M. Translocation of root-applied amiben and 2,4-D to the stems and leaves of whole plants of bean, squash (Curcurbita pepoL.), and cucumber (Cucumis sativusL.) was stimulated by dinoseb root applications only at concentrations which were highly injurious to the plants. Amiben, 2,4-D, and their metabolites were extracted from dinosebtreated and untreated tissues. The stem exudate from cucumber plants fed amiben and 2,4-D via the roots contained primarily the parent compounds, which indicates that the parent compounds are the primary components translocated through the xylem.


1970 ◽  
Vol 48 (7) ◽  
pp. 1347-1350 ◽  
Author(s):  
Pei-Show Juo ◽  
G. Stotzky

Globulins, albumins, and basic proteins were extracted from seeds of red kidney bean (Phaseolus vulgaris), and their distribution was in a ratio of about 3:2:1, respectively. The globulin fraction constituted a major portion of the reserve proteins and was hydrolyzed rapidly during germination. More than 90% of the basic proteins, extractable with 0.05 N acetic acid, disappeared 12 days after germination. Although the decrease in total albumin was not as marked as with the other two fractions, a number of components of this fraction disappeared during the early stages of germination, but several new components were detected about 8 days after germination. The apparent synthesis of new globulin components during germination was also observed, but no synthesis of basic protein could be detected.


2015 ◽  
Vol 44 ◽  
pp. 38-44 ◽  
Author(s):  
H. Sandhya ◽  
Rao Srinath

Suitable protocol for induction of callus and regeneration was developed from different explants viz., node, stem and leaves in Physalis minima. MS basal medium supplemented with various concentrations (1.0-4.0mg/l) of auxins like 2,4-Dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA) and Indole-3-acetic acid (IAA) and cytokinins (0.5-1.5mg/l) like BAP or Kn were used. All the three explants responded for induction of callus, however stem explants were found superior, followed by node and leaf. Callus induction was observed in all the auxins and combination of growth regulators used with varied mass (2010±1.10) and highest percentage of callus induction was observed from stem at 2.0mg/l 2,4-D (90%) followed by NAA (70%) and IAA (50%). Organogenesis was induced when nodal explants were transferred on MS medium supplemented with 2,4-D and Kn at various concentrations, maximum being on 2.0mg/l 2,4-D + 1.0mg/l Kn (90%). Regenerated shoots were elongated on 0.5mg/l GA3. The shoots were subsequently rooted on MS + 1.0mg/l IBA (95%) medium. Rooted shoots were hardened and acclimatized, later they were transferred to polycups containing soil, cocopeat and sand in the ratio 1:2:1.Keywords:Physalis minima, Node, Stem, Leaf, callus and growth regulators.


1999 ◽  
Vol 52 (7) ◽  
pp. 695 ◽  
Author(s):  
Graham Smith ◽  
Catherine J. Cooper ◽  
Veena Chauhan ◽  
Daniel E. Lynch ◽  
Simon Parsons ◽  
...  

Six molecular complexes containing the herbicidally active (2,4-dichlorophenoxy)acetic acid (2,4-d) and (2,4,5-trichlorophenoxy)acetic acid (2,4,5-t) have been prepared and studied by using single-crystal X-ray diffraction techniques. These adduct structures are 2,4-d with 4,4′-dipyridine (2 : 1 complex), and 2,4,5-t with respectively 5-nitroquinoline (1 : 1), 4,4′-dipyridine (2 : 1), 2-amino-2-thiazoline (1 : 1), 2-aminobenzothiazole (1 : 1) and 2-amino-5-ethyl-1,3,4-thiadiazole (1 : 1). The conformations of the phenoxyacetic acid molecules were found to be either synclinal (in three cases) or antiperiplanar (in the other three cases). A general review is also made about the conformational aspects of previously reported adducts of phenoxyacetic acid derivatives and how they compare to their free acid structures.


1983 ◽  
Vol 61 (5) ◽  
pp. 1548-1549 ◽  
Author(s):  
Bruce E. Haissig

Rooting trials with bean (Phaseolus vulgaris cv. Top Crop L.) tested the effects of phenyl tryptophyl ether (PTRE) in comparison with tryptophol (TR, indole-3-ethanol), indole-3-acetic acid (IAA), and no treatment. PTRE was synthesized from tryptophol and phenol. Results indicated that IAA treatment enhanced primordium development significantly more than any other treatment that was tested. Effects of TR and PTRE treatment on primordium development were about equal. Results suggested that PTRE is not an auxin or is only a weak auxin in comparison with IAA.


Weed Science ◽  
1972 ◽  
Vol 20 (4) ◽  
pp. 324-327 ◽  
Author(s):  
R. J. Burr ◽  
G. F. Warren

Purple nutsedge(Cyperus rotundusL.) control with (2,4-dichlorophenoxy)acetic acid (2,4-D) and 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) was increased in greenhouse and growth chamber studies by application of these herbicides in an undiluted isoparaffinic oil carrier rather than water. Two applications of 2,4-D at 2.2 kg/ha in the oil carrier inhibited tuber and shoot production and reduced the number of viable tubers present, but two applications of linuron at 0.6 or 2.2 kg/ha in the oil inhibited only shoot production from repotted tubers. Studies with labeled 2,4-D showed an increase in both rate and quantity of penetration of this herbicide into purple nutsedge when applied in oil rather than water. Labeled linuron was applied to purple nutsedge and to beans(Phaseolus vulgarisL. ‘Improved Tendergreen’) and also showed an increase in penetration with the oil rather than water. Translocation out of treated leaves was not increased for either 2,4-D or linuron by application in the oil carrier.


2008 ◽  
Vol 372 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Lana S. Barkawi ◽  
Yuen-Yee Tam ◽  
Julie A. Tillman ◽  
Ben Pederson ◽  
Jessica Calio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document