scholarly journals Effect of Electrical Stimulation of the Vagus Nerves on Bile Secretion in Anaesthetized Sheep

1976 ◽  
Vol 29 (4) ◽  
pp. 351 ◽  
Author(s):  
MichaeI Pass ◽  
Trevor Heath

Bile was collected before and during electrical stimulation of the vagus nerves in acute experiments on sheep with ligated cystic ducts. Most stimuli caused no change in: bile formation, but a 10-V, 10-Hz stimulus caused a slight increase in bicarbonate output. Neither the response to infused secretin nor the maximum rate of bile salt transpoit by liver cells changed during vagal stimulation; It was concluded that the vagal innervation of the liver is not likely to playa major role in the regulation of bile formation in sheep.

1985 ◽  
Vol 248 (4) ◽  
pp. E425-E431 ◽  
Author(s):  
S. Nishi ◽  
Y. Seino ◽  
J. Takemura ◽  
H. Ishida ◽  
M. Seno ◽  
...  

The effect of electrical stimulation of the vagus nerves on the release of immunoreactive gastrin-releasing peptide (GRP), gastrin, and somatostatin was investigated using the isolated perfused rat stomach. Electrical stimulation (10 Hz, 1 ms duration, 10 V) of the peripheral end of the subdiaphragmatic vagal trunks produced a significant increase in both GRP and gastrin but a decrease in somatostatin. The infusion of atropine sulfate at a concentration of 10(-5) M augmented GRP release and reversed the decrease in somatostatin release in response to vagal stimulation to an increase above basal levels. However, the gastrin response to vagal stimulation was not affected by atropine. The infusion of hexamethonium bromide at a concentration of 10(-4) M significantly suppressed GRP release but did not affect gastrin secretion in response to vagal stimulation. On the other hand, the somatostatin response to vagal stimulation was completely abolished by hexamethonium. These findings lead us to conclude that the intramural GRP neurons might play an important role in the regulation of gastrin as well as somatostatin secretion and that somatostatin secretion may be controlled not only by a cholinergic inhibitory neuron but also by a noncholinergic, e.g., peptidergic stimulatory neuron, both of which may be regulated through preganglionic vagal fibers via nicotinic receptors. In addition, because the infusion of 10(-7) M GRP suppressed the somatostatin secretion, we suggest that either GRP should be excluded from the list of candidates for the noncholinergic stimulatory neurotransmitter for somatostatin secretion or that there are different mechanisms of action for endogenous and exogenous GRP.


1997 ◽  
Vol 272 (1) ◽  
pp. G154-G160 ◽  
Author(s):  
H. Glad ◽  
P. Svendsen ◽  
O. Olsen ◽  
O. B. Schaffalitzky de Muckadell

During the cephalic phase of gastric acid secretion, vagally mediated synchronous stimulation of bicarbonate provides protection against the acid. The purpose of this study was to determine simultaneously the effect of electrical vagal stimulation (EVS) on pancreatic, hepatic, and duodenal mucosal bicarbonate secretion, thereby estimating their relative importance in vagally induced duodenal acid neutralization. Splanchnicotomy increased vagally induced pancreaticobiliary bicarbonate secretion, whereas duodenal mucosal bicarbonate secretion was unchanged. After splanchnicotomy, EVS (10 ms, 15 mA, 12 Hz) significantly increased pancreatic bicarbonate secretion (0-4.17 mmol/h), hepatic bicarbonate secretion (0.16 to 0.22 mmol/h), and duodenal mucosal bicarbonate secretion (0.17 to 0.31 mmol/h). Pancreaticobiliary bicarbonate secretion was atropine resistant, whereas vagally induced duodenal mucosal bicarbonate secretion was diminished by atropine (2.0 mg/kg). After splanchnicotomy, EVS (10 ms, 15 mA, 12 Hz) had no effect on portal plasma concentration of secretin, whereas vasoactive intestinal peptide was increased (14-29 pM). EVS at 12 Hz with varying duration (3 or 10 ms) and amplitude (3-50 mA) had no further effect on the bicarbonate secretion from the three organs. In addition, biliary [14C]mannitol clearance was shown not to be a reliable marker of canalicular bile secretion in pigs. These results suggest that in the anesthetized pig 1) vagal stimulation is only of minor importance to hepatic bicarbonate secretion; 2) vagal stimulation activates pancreatic bicarbonate secretion through both cholinergic muscarinic and noncholinergic transmission; and 3) vagal stimulation induces duodenal mucosal bicarbonate secretion mainly through cholinergic muscarinic transmission. In conclusion, these results suggest that only pancreatic and duodenal bicarbonate production play a role in vagally induced duodenal acid neutralization.


1978 ◽  
Vol 234 (4) ◽  
pp. E359 ◽  
Author(s):  
J J Kravitz ◽  
W J Snape ◽  
S Cohen

The purpose of this study was to determine the effect of thoracic vagotomy and thoracic vagal stimulation upon esophageal peristalsis and lower esophageal sphincter (LES) function in the opossum. The thoracic portion of the vagus nerve was sectioned in the upper or lower thorax. Bilateral, but not unilateral, thoracic vagotomy above the level of the heart abolished peristalsis and LES relaxation in response to swallowing or cervical vagal electrical stimulation. Thoracic vagotomy at the level of the ventricle or below did not alter either peristalsis or LES relaxation during swallowing or cervical vagal stimulation. Secondary peristalsis and its associated LES relaxation was unaltered by thoracic vagotomy at any level. Electrical stimulation of the distal end of the upper thoracic vagus elicited both peristalsis and LES relaxation. Electrical stimulation of the distal end of the lower thoracic vagus elicited both peristalsis and LES relaxation. Electrical stimulation of the distal end of the lower thoracic vagus, as well as stimulation of the vagal branches to the terminal esophagus, gave only LES relaxation. These studies suggest that: a) the major extrinsic vagal innervation mediating primary peristalsis terminates in the upper portion of the esophagus, whereas the vagal innervation mediating LES relaxation responses are present throughout the length of the esophagus; and b) secondary peristalsis and its associated LES relaxation occurs independent of extrinsic vagal innervation.


1982 ◽  
Vol 52 (4) ◽  
pp. 964-966 ◽  
Author(s):  
J. R. Sheller ◽  
M. J. Holtzman ◽  
B. E. Skoogh ◽  
J. A. Nadel

The bronchoconstrictor response to electrical stimulation of the peripheral ends of both cut cervical vagus nerves was potentiated by serotonin aerosols in 10 experiments in 7 anesthetized dogs. The bronchoconstrictor response to acetylcholine (ACh) aerosols was unchanged after serotonin. We conclude that serotonin acts at the level of the parasympathetic ganglia or the postganglionic nerve terminal to potentiate the bronchoconstrictor response to vagal stimulation.


1992 ◽  
Vol 263 (6) ◽  
pp. G908-G912 ◽  
Author(s):  
J. J. Holst ◽  
P. N. Jorgensen ◽  
T. N. Rasmussen ◽  
P. Schmidt

We studied the functional coupling between antral somatostatin and gastrin cells in isolated perfused porcine antrum using immunoneutralization with monoclonal antibodies against somatostatin. Their binding affinity was 10(11) l/mol, and the final binding capacity was 11.7 nmol/ml. Antibody infusion within 1 min increased gastrin secretion, reaching a rate of 349 +/- 64% (means +/- SE, n = 7) of basal secretion (59 +/- 5 pmol/l) after 5 min. The effect of somatostatin at 10(-9) mol/l, which inhibited gastrin secretion from 58 +/- 11 to 14 +/- 3 pmol/min (n = 4), was abolished by antibody infusion. Electrical stimulation of the vagus nerves (n = 7) performed during antibody infusion increased gastrin secretion from 224 +/- 61 to 328 +/- 55 pmol/min, not significantly different from the increase in control experiments from 43 +/- 9 to 118 +/- 20 pmol/min, indicating that the vagal stimulation of gastrin secretion does not depend on mechanisms involving somatostatin. We conclude that paracrine antral somatostatin secretion is one of the most important factors regulating basal gastrin secretion in pigs.


1991 ◽  
Vol 261 (1) ◽  
pp. G104-G110
Author(s):  
L. E. Hierlihy ◽  
J. L. Wallace ◽  
A. V. Ferguson

The role of the vagus nerve in the development of gastric mucosal damage was examined in urethan-anesthetized male Sprague-Dawley rats. Electrical stimulation was applied to the vagus nerves for a period of 60 min, after which macroscopic gastric damage was scored and samples of the stomach were fixed for later histological assessment. Damage scores were assigned blindly based on a 0 (normal) to 3 (severe) scale. Stimulation of vagal afferents or efferents in isolation did not result in significant damage to the gastric mucosa (P greater than 0.1). In contrast, stimulation of both intact vagus nerves resulted in significant gastric mucosal damage (mean damage score, 2.0 +/- 0.33, P less than 0.01). A second series of experiments demonstrated this gastric damage to be induced within 30-60 min; extending the stimulation period to 120 min did not worsen the gastric damage scores significantly (P greater than 0.1). In a third study, stimulation of both intact vagus nerves after paraventricular nucleus (PVN) lesion resulted in damage scores (0.33 +/- 0.17) that were significantly reduced compared with intact PVN and non-PVN-lesioned animals (P less than 0.01). These results indicate that the development of vagal stimulation-induced gastric damage requires the activation of both afferent and efferent vagal components and suggest further that such damage is dependent upon an intact PVN.


1991 ◽  
Vol 66 (6) ◽  
pp. 2084-2094 ◽  
Author(s):  
R. W. Blair ◽  
A. R. Evans

1. Medullary raphespinal neurons antidromically activated from the T2-T5 segments were tested for responses to electrical stimulation of cervical vagal and thoracic sympathetic afferents (by stimulating the left stellate ganglion), somatic probing, auditory stimuli, and visual stimuli in cats anesthetized with alpha-chloralose. A total of 99 neurons in the raphe nuclei were studied; the locations of 76 cells were histologically confirmed. Neurons were located in raphe magnus (RM, 65%), raphe obscurus (RO, 32%), and raphe pallidus (RPa, 4%). The mean conduction velocity of these neurons was 62 +/- 2.9 (SE) m/s with a range of 1.1-121 m/s. 2. A total of 60/99 tested neurons responded to electrical stimulation of sympathetic afferents. Quantitation of responses was obtained for 55 neurons. With one exception, all responsive neurons were excited and exhibited an early burst of spikes with a mean latency of 16 +/- 1.2 ms. From a spontaneous discharge rate of 5.2 +/- 1.2 spikes/s, neuronal activity increased by 2.9 +/- 0.3 spikes/stimulus. In addition to an early peak, 15 neurons (25%) exhibited a late burst of spikes with a latency of 182 +/- 12.9 ms; neuronal activity increased by 5.0 +/- 1.3 spikes/stimulus. Duration of the late peak (130 +/- 18.5 ms) was longer than for the early peak (18 +/- 0.7 ms), but threshold voltages for eliciting each peak were comparable. Sixteen of 29 spontaneously active neurons exhibited a postexcitatory depression of activity that lasted for 163 +/- 19.1 ms. All but one tested neuron in RO responded to stimulation of sympathetic afferents, but 65% of neurons in RM responded to this stimulus. 3. In response to vagal afferent stimulation, 19% of 57 neurons exhibited inhibition only, 11% were only excited, and 9% were either excited or inhibited, depending on the stimulus paradigm used; the remaining 61% of neurons were unresponsive. From a spontaneous rate of 7.9 +/- 3.8 spikes/s, excited cells increased their discharge rate by 1.6 +/- 0.3 spikes/stimulus. Activity of inhibited cells was reduced from 21.3 +/- 5.8 to 7.8 +/- 3.1 spikes/s. The conditioning-test (CT) technique was used to assess 11 neurons' responses. Stellate ganglion stimulation was the test stimulus, and vagal stimulation the conditioning stimulus. Vagal stimulation reduced the neuronal responses to stellate ganglion stimulation by an average of 50% with a CT interval of 60-100 ms, and cell responses returned to control after 300 ms. With spontaneous cell activity, low frequencies of vagal stimulation were generally excitatory, and high frequencies (10-20 Hz) inhibitory.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 264 (3) ◽  
pp. G486-G491 ◽  
Author(s):  
G. Tougas ◽  
P. Hudoba ◽  
D. Fitzpatrick ◽  
R. H. Hunt ◽  
A. R. Upton

Cerebral evoked responses following direct electrical stimulation of the vagus and esophagus were compared in 8 epileptic subjects and with those recorded after esophageal stimulation in 12 healthy nonepileptic controls. Direct vagal stimulation was performed using a left cervical vagal pacemaker, which is used in the treatment of epilepsy. Esophageal stimulation was obtained with the use of an esophageal assembly incorporating two electrodes positioned 5 and 20 cm orad to the lower esophageal sphincter. Evoked potential responses were recorded with the use of 20 scalp electrodes. The evoked potential responses consisted of three distinct negative peaks and were similar with the use of either vagal or esophageal stimulation. The measured conduction velocity of the afferent response was 7.5 m/s in epileptic subjects and 10 m/s in healthy controls, suggesting that afferent conduction is through A delta-fibers rather than slower C afferent fibers. We conclude that the cortical-evoked potential responses following esophageal electrical stimulation are comparable to direct electrical stimulation of the vagus nerve and involve mostly A delta-fibers. This approach provides a method for the assessment of vagal afferent gastrointestinal sensory pathways in health and disease.


1995 ◽  
Vol 79 (4) ◽  
pp. 1233-1241 ◽  
Author(s):  
J. R. Haselton ◽  
A. Y. Reynolds ◽  
H. D. Schultz

Experiments were conducted with chloralose-urethan anesthetized rats to assess the effects of 1) bilateral stimulation of the cervical vagus nerves and 2) parasympathomimetic and sympathomimetic agents. Transpulmonary pressure (Ptp) was used as an index of airway smooth muscle tone, and peak inspiratory Ptp (Ptppeak) values were used for a comparison of responses. In untreated animals, vagal stimulation elicited an increase in Ptppeak of 155%. Cooling of the vagus nerves to 15 degrees C abolished the response of Ptppeak to vagal stimulation. Although isoproterenol (1–10 micrograms/kg i.v.) did not alter resting Ptppeak, it did prevent vagal stimulation from evoking an increase in Ptppeak. Nadolol (1.5 mg/kg i.v.) augmented the increase in Ptppeak elicited by vagal stimulation. Vagal stimulation did not evoke any change in Ptppeak after the administration of both nadolol and atropine or after combined administration of nadolol, atropine, and either serotonin aerosol or prostaglandin F2 alpha. In rats pretreated with capsaicin 1 wk before the experiment, vagal stimulation evoked an increase in Ptppeak that was not statistically different from that of untreated control animals. Therefore, nonadrenergic noncholinergic systems did not appear to play an independent role in the response of the airways to the activation of the vagus nerves.


1992 ◽  
Vol 263 (5) ◽  
pp. G709-G718 ◽  
Author(s):  
M. Schemann ◽  
D. Grundy

Myenteric "command neurons" are thought to be the interface between extrinsic and intrinsic controls of gut functions and are thought to be responsible for transmission of vagal impulses to enteric microcircuits. To identify, electrophysiologically, myenteric neurons responding to electrical stimulation of the vagus, we developed an in vitro preparation of the gastric myenteric plexus in which the vagal innervation was preserved. The majority of myenteric neurons [102 of 155 (66%)] received fast excitatory postsynaptic potentials (fEPSPs) after stimulation of the vagus. The proportion of neurons receiving vagal input was highest at the lesser curve (98%) and decreased gradually when recordings were made from neurons located toward the greater curve. Only a small proportion of neurons (4 of 85 cells) showed a slow EPSP after a burst of vagal stimulation. No postsynaptic inhibitory potentials were observed. There was no preferential vagal input to either gastric I, gastric II, or gastric III neurons. The fEPSPs were due to the release of acetylcholine acting postsynaptically on nicotinic receptors. The behavior of the fEPSPs suggests multiple vagal inputs to a majority of myenteric neurons. Our observations call into question the concept of enteric command neurons in favor of a divergent vagal input with widespread modulatory influences over gastric enteric neurotransmission.


Sign in / Sign up

Export Citation Format

Share Document