Metal Complexes of an Ionic Liquid-Derived Carbene

2011 ◽  
Vol 64 (8) ◽  
pp. 1133 ◽  
Author(s):  
Marcus L. Cole ◽  
Matthew R. Gyton ◽  
Jason B. Harper

A range of metal carbene complexes containing the ionic liquid-derived N-heterocyclic carbene (NHC) 1-nbutyl-3-methylimidazol-2-ylidene (IBuMe, 1) have been prepared by (i) direct ligand substitution using the free NHC ([Mo(CO)5(IBuMe)] 2), (ii) transmetallation using the silver salt [AgCl(IBuMe)] (3) ([RhCl(NBD)(IBuMe)] (4) and [IrCl(COD)(IBuMe)] (5), NBD = 2,5-norbornadiene, COD = 1,5-cyclooctadiene) and (iii) direct reaction of a metal acetate with the hydrochloride salt of 1 (trans-[PdCl2(IBuMe)] (6)). The dicarbonyl cis-[RhCl(CO)2(IBuMe)] (7) has been prepared by diene substitution under a carbon monoxide atmosphere. The molecular structures of 2, 4, 5 and 6 are reported and the sigma donation and steric properties of 1 are discussed relative to those of common imidazol-2-ylidene ligands.

2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1390 ◽  
Author(s):  
Ilya G. Shenderovich

Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8–12 and molecular structures. General recommendations for appropriate basis sets are reported.


2017 ◽  
Vol 14 (1) ◽  
pp. 135-147
Author(s):  
Baghdad Science Journal

The free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with the theoretical values indicating the purity of Schiff base ligand and the metal complexes. From the above data, the molecular structures for all the metal complexes are proposed to be octahedral


Author(s):  
Niklas Gessner ◽  
Anna Karina Bäck ◽  
Johannes Knorr ◽  
Christoph Nagel ◽  
Philipp Marquetand ◽  
...  

Transition metal complexes capable of releasing small molecules such as carbon monoxide and nitric oxide upon photoactivation are versatile tools in various fields of chemistry and biology. In this work,...


Sign in / Sign up

Export Citation Format

Share Document