Viscosity and Transference Number Measurements of Concentrated Nickel Chloride Solutions at 298.15 K

1979 ◽  
Vol 32 (5) ◽  
pp. 1149 ◽  
Author(s):  
S Phang

The viscosity and transference numbers of the nickel ion constituent in nickel chloride solutions are reported between about 0.1 and 4.3 mol dm-3. The e.m.f. method was used to measure the transference number. The latter was compared with values from other methods. The viscosity results were used to test the Wishaw-Stokes equation.

1995 ◽  
Vol 393 ◽  
Author(s):  
B. Ma ◽  
J.-H. Park ◽  
C. U. Segre ◽  
U. Balachandran

ABSTRACTOxides in the Sr-Fe-Co-O system exhibit both electronic and ionic conductivities. Recently, the Sr-Fe-Co-O system attracted great attention because of its potential to be used for oxygen-permeable membranes that can operate without electrodes or external electrical circuitry. Electronic and ionic conductivities of two compositions of the Sr-Fe-Co-O system, named SFC-1 and SFC-2, have been measured at various temperatures. The electronic transference number is much greater than the ionic transference number in SFC-1, whereas the electronic and ionic transference numbers are very similar in SFC-2. At 800°C, the electronic and ionic conductivities are ≈76 and ≈4 S•cm−1, respectively, for SFC-1; whereas, for SFC-2, the electronic and ionic conductivities are ≈10 and ∼1 S•cm−1, respectively. By performing a local fitting to the equation σ • T = Aexp(-Ea / kT), we found that the oxide ion activation energies are 0.92 and 0.37 eV, respectively, for SFC-1 and SFC-2. The oxygen diffusion coefficient of SFC-2 is ≈ 9 x 10−7cm2/sec at 900°C.


1979 ◽  
Vol 24 (9) ◽  
pp. 1013-1017 ◽  
Author(s):  
Mario Della Monica ◽  
G. Petrella ◽  
A. Sacco ◽  
S. Bu̇fo

1967 ◽  
Vol 50 (6) ◽  
pp. 1729-1749 ◽  
Author(s):  
Thomas E. Andreoli ◽  
J. Andrew Bangham ◽  
Daniel C. Tosteson

Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, Tion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. TNa and TK were approximately equal (∼0.8) and considerably greater than TCl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract.


1967 ◽  
Vol 20 (12) ◽  
pp. 2575 ◽  
Author(s):  
R Arnold ◽  
DA Swift

Hydrogen-ion transport numbers, water transference numbers, and acid absorption are reported for some cation-exchange membranes in presence of 0.1N, 1.0N, and 5.0N sulphuric acid. The transport numbers of hydrogen ion remain fairly close to unity even at the highest acid concentration; this is largely due to the retardation of the anions by the electro-osmotic water flux. With increasing acid concentration the water transference number falls to a lower limit of 1.0 mole per faraday; with the driest membrane used this value is obtained at all acid concentrations used. This behaviour suggests that when there are less than about 11 moles of water available per hydrogen ion in the membrane, association occurs between sulphonate groups and hydrogen ions, with consequent immobilization of the latter.


Sign in / Sign up

Export Citation Format

Share Document